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Abstract
In this thesis, we investigate the impact of intermittent renewable energy
sources on the level and volatility of the Czech electricity spot prices during the
period from 2015 to 2019. The analysis is warranted due to the obligations of
the member states of the European Union to augment the share of clean energy
in the gross final energy consumption by 2030. The technique applied in the
empirical part concerns univariate GARCH-class models (namely, plain vanilla
and exponential) which are extended with additional explanatory variables in
the form of total load, solar and wind power generations. By constructing daily,
peak and off-peak indices from the dataset comprised of hourly observations,
we establish a comparative framework throughout the text. More specifically,
this approach allows us to contrast price dynamics under the regimes of high
and low demand for electricity as well as to explore the patterns of solar and
wind production. The findings indicate that both Czech solar and wind power
sources induce the so-called merit order effect. In contrast, once the volatility of
electricity prices is taken into account, the examined sources of energy behave
in a different manner. Owing to the daily index, while solar power generation
decreases the volatility of electricity prices, the opposite is found true for wind
power generation. Furthermore, it is shown that the volatility of peak prices
is unaffected by the alternative sources of energy and that of off-peak prices is
augmented due to, besides other things, solar and wind power feed-in.
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Abstrakt
V této bakalářské práci se zabýváme vlivem intermitentních obnovitelných
zdrojů energie na úroveň a volatilitu českých spotových cen elektřiny v letech
2015 až 2019. Rozbor je odůvodněn závazkem členských států Evropské unie
zvýšit podíl čisté formy energie na hrubé konečné spotřebě energie do roku 2030.
Aplikovanou technikou v empirické části práce jsou jednorozměrné modely typu
GARCH (konkrétně jde o klasické a exponenciální), které jsou rozšířeny o do-
datečné vysvětlující proměnné ve formě celkového zatížení a výroby solární
a větrné energie. Tím, že jsme vytvořili ze souboru hodinových dat denní,
špičkové a mimošpičkové indexy, položili jsme základ pro komparativní rámec
textu. Tento způsob nám umožňuje porovnat chování cen v době velké a
malé poptávky po elektřině a zkoumat dynamiku solárních a větrných elek-
tráren. Závěry naší studie ukazují, že oba typy analyzovaných obnovitelných
zdrojů energie vyvolávají takzvaný efekt pořadí záslužnosti. Pokud však mlu-
víme o volatilitě cen elektřiny, zkoumané zdroje energie mají odlišný účinek.
Co se týká denního indexu, zatímco výroba solární energie snižuje volatilitu
cen elektřiny, výroba té větrné ji naopak zvyšuje. Práce rovněž dokládá, že
volatilita špičkových cen alternativními zdroji ovlivňována není a že volatilita
mimošpičkových cen roste mimo jiné vlivem integrace solární a větrné energie.
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Research question and motivation
The purpose of this thesis is to inspect the effects of renewable resources on electricity
prices in the Czech Republic.

Electricity markets currently depart from their traditional role of delivering elec-
tricity and acquire many other functions in society. For instance, employment op-
portunities or the sustainability of energy supply represent some of the new tasks
that shall be managed by them (Kyritsis, Andersson, and Serletis, 2017). Therefore,
markets of interest undergo intense restructuring; hence, renewable energy sources
are integrated into the electricity production mix.

Before I proceed with some elements related to renewable resources, factors re-
garding electricity prices should be noted as they make the analysis rather challeng-
ing. In the first place, since electricity is a non-storable commodity, the balance
between supply and demand must be maintained immediately to prevent temporary
imbalances. That is why more extreme prices that tend to revert quickly to their
long-run level once supply and demand arrive at their equilibrium occur.

Another pattern in electricity prices is seasonality which refers to the observation
that demand varies during the particular time periods. Seasonal patterns are also
present when renewable energy production is discussed. As a matter of example,
solar production peaks during summer and falls gradually during winter, while the
reverse process is partially true for wind power production (Kyritsis, Andersson, and
Serletis, 2017).

And what is more, intermittent renewables contribute to the already complex
electricity market dynamics by inducing the so-called merit order effect. This princi-
ple is based on the marginal cost and results in lower electricity prices as renewables
with their virtually zero marginal costs acquire priority dispatch. On top of that,
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investigating the impact of renewable resources stands for a significant piece of in-
formation when we consider their increasing shares in electricity markets.

Contribution
As debates related to environmental issues evolve, it is important to recognize the
effects of renewable resources on electricity prices. This finding can be beneficial
to various Czech electricity market’s participants (be it generators, distributors or
suppliers). More specifically, assessing the volatility of renewable energy systems
is instrumental to risk managers and market traders who determine their trading
strategies and energy portfolios. Therefore, the subject matter of this thesis may
also be of great concern to policymakers. In particular, taking into account emerging
trends, a system operator is responsible for adapting the market design to enhance
market efficacy. Social welfare is then improved accordingly.

Methodology
I develop a time series analysis, using day-ahead electricity prices and the total elec-
tricity load quoted by OTE and ENTSO-E (the Czech Electricity and Gas Market
Operator and the European Network of Transmission System Operators for Electric-
ity, respectively). Additionally, Kyritsis, Andersson, and Serletis (2017) argue that
the predicted power generation influences day-ahead electricity prices. However, de-
spite this rule, I am forced to use the values of the actual generation due to the
limited data availability for the predicted renewable generation and predicted total
load.

The substantial volatility in deregulated markets calls for the generalized autore-
gressive conditional heteroskedasticity (GARCH) models. They are considered very
efficient in capturing the times of irregular price spikes and periods of relative tran-
quility (Efimova and Serletis, 2014). Furthermore, these models allow researchers to
explicitly test the effects of renewable energy generation on the mean and volatil-
ity of electricity and are also helpful in detecting the inverse leverage effect. In
addition to that, the mean-reverting factor of the analysed prices may result in the
autoregressive-generalized specification of the GARCH mean equation known as AR-
GARCH (Ketterer, 2014).

Using the aforementioned models, the following hypotheses are to be tested.

Hypotheses

Hypothesis #1: The sensitivities of Czech day-ahead electricity prices to re-
newable energies vary over time.

Hypothesis #2: Both Czech solar and wind power generation induce a merit
order effect.
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Hypothesis #3: In the Czech Republic, the penetration of renewables into the
power system increases the volatility of day-ahead electricity prices.
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Chapter 1

Introduction

The uniqueness of electricity lies in that it cannot be economically stored, signi-
fying that power systems must balance production and consumption ceaselessly
in order to ensure grid stability (Weron, 2014). This non-storability is also re-
flected in the notion that electricity traded at a particular time of a day is a
dissimilar commodity to that traded at different times (Guthrie and Videbeck,
2007). In the same vein, electricity markets exhibit distinct features through-
out the day, e.g. flexibility or economic efficiency, that are correspondingly
translated into the price dynamics (Kyritsis et al., 2017), which underlines
the importance of distinguishing between prices in individual trading periods.
Electricity prices, in general, pose non-trivial difficulties modelling-wise as they
display intriguing features, such as mean-reversion, periodicity, volatility that
varies across time, clustering of volatility, and extreme values in the form of
spikes (see, for instance, Knittel and Roberts, 2005, or Simonsen et al., 2004).

To demonstrate the complexity inseparable from electricity price series, the
study of Chan et al. (2008) provides a comparison with the area of traditional
finance. More specifically, the mean of electricity price changes shall not be
assumed inconsequential, as is the case when working with equity indices or
exchange rates (and at the same time with high-frequency data), since the
drift manifests regular patterns at the daily, weekly, and annual levels as well.
Apart from the inability to utilize inventories of electricity to even out supply
and demand shocks, the higher degree of volatility of electricity prices, when
compared to prices of other commodities, stems from transmission constraints
and the activation of miscellaneous types of plants so that the demand will be
covered (Hickey et al., 2012).

All of the above-mentioned facts demonstrate that the power system is a
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very challenging space. In addition to that, the landscape of many power
sectors has been transforming due to the increasing presence of variable renew-
able energy sources (RES) that add another layer to its complexity. Generally
speaking, solar1 and wind power display uncontrollable changeability, are par-
tially unforeseeable and dependent on locational conditions (Pérez-Arriaga and
Batlle, 2012). As a result, short-time changes and volatile episodes of time to
which RES power generation is subject, meaning that load balance issue arises
once again, account for the significant drivers behind electricity prices (Keles
et al., 2016). Because of this very reason and also because there are country-
specific factors influencing electricity markets, the presented work analyzes the
impact of RES on Czech day-ahead electricity spot prices.

Owing to the situation surrounding Czech intermittent renewables, it can
be claimed that their position, particularly that of solar power generation,
has been gaining its relevance ever since 2004. Previously, RES had been
peripheral or almost absent in the country except for water energy sources,
most of which had become constituents of the projects intended to regulate
the flow of the Vltava river (and hence, their original purpose had not lain in
energy production), as noted by Tanil and Jurek (2020). However, due to the
fact that the Czech solar capacity increased more than 50 times at the turn
of the last decade (Rečka and Ščasný, 2016), European Union (EU) indicative
national target of 13% share of RES on gross final energy consumption in
the CZ was achieved as early as in 2013, i.e. seven years before the year for
which the target was scheduled (Luňáčková et al., 2017). Consequently, that
the CZ proposed a renewable energy target of 22% by 2030 in the aspect of
decarbonisation (MPO, 2020) represents another motive behind the origin of
this thesis. Uncovering how intermittent RES affect the level and variance of
Czech day-ahead electricity prices ultimately stands for an essential piece of
knowledge for the regulator in its market monitoring. It is also an important
input for the policymakers who must accommodate market design in order to
enhance social welfare by elevating the effectiveness of the operation. Moreover,
it can be informative for risk managers who must have a full comprehension of
the underlying processes affecting prices and for agents who seek to quantify
the degree of uncertainty to which they are exposed (Karakatsani and Bunn,
2008, and Kyritsis et al., 2017).

1 Since the Czech Republic (CZ) does not experience any concentrating solar power project,
the term “photovoltaic” is used interchangeably with the term “solar” in the Czech envi-
ronment (Luňáčková et al., 2017).
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The remainder of this thesis is structured as follows. Chapter 2 provides the
reader with insight into the specifics of electricity markets and the behaviour of
electricity prices in the presence of intermittent renewable energy. The relevant
literature is also summarised. We additionally supplement the respective sec-
tions with the information regarding the Czech day-ahead electricity market,
thereby the aforesaid country-specific factors will be pointed out. Chapter 3
develops the hypotheses under investigation, taking into account the outcome
of similar studies. Chapter 4 describes the data, the argumentation behind
their incorporation into the analysis, the corresponding visual representation,
and descriptive statistics. Data preprocessing, which comprises of outlier de-
tection and seasonal adjustment, and selected tests regarding normality and
stationarity are executed as well. The applied methodology and the detailed
description of the estimation procedure and model selection criteria are de-
scribed in Chapter 5. The empirical analysis is performed and the results
are discussed in Chapter 6, while Chapter 7 offers the suggestions for future
research and concludes the work.



Chapter 2

Theoretical insight and literature
overview

In this chapter divided into three sections, we provide a more thorough descrip-
tion of the phenomena encompassing energy systems. The first section outlines
the distinct features of electricity prices and the techniques for capturing such
peculiarities. This will be of particular convenience when the data will be con-
sidered. Section 2.2 analyses price volatility. Section 2.3 explains the so-called
merit order effect (MOE) that represents an inherent concept in the research
on the effects of RES on electricity prices. In addition to that, every section
offers the corresponding information about the energy market in the CZ.

2.1 Stylized facts of electricity prices
The advent of electricity modelling in the 1990s is related to the shift of electric-
ity industry structure from vertically integrated monopoly towards unbundled
entities (Erdogdu, 2016). During the liberalization process, energy transformed
from a commodity that had been initially sold by public utilities to a commod-
ity traded on day-ahead and intraday spot markets, and its prices soon became
subject to market risk and volatility. Patterns like seasonality, mean-reversion,
and price spikes came thereafter under scrutiny. Among the pioneering works
concerned with the unique characteristics of electricity prices, there are the
studies of Deng (2000) and Lucia and Schwartz (2002). The author of the
former work proposes mean-reversion jump-diffusion models including regime-
switching and stochastic volatility components to adequately capture genuine
features of electricity prices. The authors of the latter study analyze the Nordic
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Power Exchange’s spot, futures, and forward prices, concluding that the sea-
sonal pattern is instrumental for the explanation of the shape of the respective
curves. Broadly speaking, the following stylized facts can be represented by
deterministic functions (Erdogdu, 2016).

2.1.1 Price spikes and mean-reversion

In general, supply and demand shocks in power markets stemming from e.g.
unanticipated outages of generation units may give rise to extreme prices that
usually converge back to the equilibrium level as soon as the imbalance be-
tween supply and demand has been resolved. The inherent reason for such
spikes is that electricity cannot be effectively stored1 so the mismatch has to
be executed on an instantaneous basis. As a result of price spikes, electricity
price distributions have high kurtosis and fat tails which introduce a substan-
tial challenge for energy risk management operations (Kyritsis et al., 2017).
Specifically, these fluctuations cause uncertainties about revenues for produc-
ers and costs for retail suppliers, implying that higher prices paid by consumers
may be warranted (Tashpulatov, 2013). What is particularly remarkable for
electricity prices in this respect and also very symptomatic is that a price in a
power market can increase by 100 times or even more and then it undergoes a
relatively swift return to its normal level (Erdogdu, 2016).

Concerning mean-reversion, Simonsen et al. (2004) argue that the spot price
increments are anti-correlated, meaning that the likelihood of a price drop
following a positive increment in the past is greater than a price accrual. For
curiosity, Barlow (2002), who presents a nonlinear jumpless model for spot
power prices, states that the estimate for the time over which the process
is corrected to the mean varies from two to six days. This corresponds to the
finding of Krištoufek and Luňáčková (2013) who report that the Hurst exponent
for the electricity price series is around 1.1, indicating that the reversion to the
long-term value is rapid. They argue that since the series in question also
comprises of spot prices (that is, prices whose purpose lies in covering the
demand which has not been accounted for by future contracts), the demand
shock is only of a short duration.

Corresponding studies include the work of Huisman et al. (2007) who ex-
amine the dynamics of hourly electricity prices using a panel model of 24 cross-

1 This does not hold for pumped-storage hydropower plants and generator fuel storages as
mentioned by Krištoufek and Luňáčková (2013), and by Escribano et al. (2011).
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sectional hours in the day-ahead markets in the Netherlands, Germany, and
France.2 The conclusions uncover that the prices oscillate around a mean price
level that is specific for each hour and that the speed of mean-reversion is not
stable over the day (the process is less pronounced for super-peak hours, i.e.
from 18:00 to 22:00). The authors also report that peak hours correlate highly
among each other and that off-peak hours exhibit the same pattern. That these
two blocks do not correlate with each other is explained by the lower reserve
capacity during the peak hours when volatility and spikes are considerable.
Additionally, Huisman and Mahieu (2003) assert that although a large body
of literature introduces stochastic jump processes to capture the dynamics of
electricity prices (e.g. Lucia and Schwartz, 2002, or Knittel and Roberts, 2005),
these models may not be able to specify the true mean-reversion process. The
thing is that if mean-reversion occurs during the non-spike (“normal”) peri-
ods, then the process may become overestimated as a result of having been
calibrated with data from the spikes. The assumption that all the shocks, irre-
spective of their magnitude, take the same amount of time to die out is further
challenged by Escribano et al. (2011). The authors also resolve the limita-
tion of estimating the jump-diffusion process by (quasi-)maximum likelihood
as this procedure would only detect the smallest and more frequent jumps in
the model. Last but not least, Barz and Johnson (1999) work with a collection
of data from multiple deregulated markets and investigate the fit of models that
either do not incorporate mean reversion and jumps or do so. They ascertain
that a mean-reverting model with jumps yield the best fit.

2.1.2 Seasonality

Additional regularity of electricity prices is seasonality as prices follow weekly
and yearly patterns. Since this is a consequence of different demand reac-
tions towards different days and seasons, the inelastic short-term electricity
demand is considered to be a source of price seasonality (Kyritsis et al., 2017).
The demand is highly inelastic because of its weather-dependent characteristic
and because energy is a necessary commodity (Escribano et al., 2011). Cor-
respondingly, Li and Sailor (1995) show in their study on the sensitivity of
electricity use to climate factors that the most significant weather parameter
affecting electricity consumption is temperature. Indeed, electricity demand

2 The respective wholesale power markets are the Amsterdam Power Exchange (APX), then
the part of the European Energy Exchange (EEX), and the Paris Power Exchange (PPX).
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exhibits seasonal variation with respect to the temperature profile as can be
reflected in the usage of electric heating appliances and air conditioners (Pardo
et al., 2002).3 Equally important determinant in electricity price formation is
the supply side. Specifically, RES power production also exhibits the seasonal
“footprint” as solar generation reaches its maximum during summer, while the
opposite is partially true for wind generation (Kyritsis et al., 2017).

When it comes to capturing the periodic components, the widely utilized
method accounts for constant piece-wise step functions. The removal of the pre-
dictable components through the usage of dummy variables and the subsequent
employment of residuals or the so-called “filtered” prices in the estimation is
followed by e.g. Haldrup and Nielsen (2006) and Guthrie and Videbeck (2007)
in their analyses of spot price dynamics in Nordic and New Zealand electricity
markets, respectively. Other approaches towards the approximation of seasonal
patterns are based on periodic sine and cosine functions (for instance, Weron
et al., 2004) or the combination of binary variables and trigonometric functions
(for example, Lucia and Schwartz, 2002). Tashpulatov (2013), who studies the
impact of price-cap regulation and divestment on electricity prices in England
and Wales, favours the application of periodic smooth functions as it results
in a more parsimonious model. The author determines the frequencies of the
functions based on the Fourier transform. Last but not least, Janczura et al.
(2013) deals with the sensitivity of the long-term or trend-cycle and short-term
or periodic seasonal patterns to extreme observations.

Regarding the Czech electricity market, Krištoufek and Luňáčková focus on
the properties of electricity prices, considering particularly long-term memory
of the spot prices. Making use of the detrended fluctuation analysis motivated
by complex cyclicality, the authors show that the Czech prices exhibit the
salient features described above. More specifically, the Czech price series is
non-stationary but mean-reverting, which allows predicting its development to
some extent.

2.2 Volatility
Other genuine properties of electricity prices are connected to volatility which
stems from the non-storability of electricity. Electricity prices are extremely
volatile also because demand is insensitive to price fluctuations in the short-

3 Pardo et al. (2002) note that demand is inelastic to the temperature changes around 18°C.
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term and because supply can face binding constraints during peak times (Es-
cribano et al., 2011). Hence, in the markets where both supply and demand
curve are steep, one can observe abrupt sharp increases in prices as the quan-
tity demanded is raised. These issues then translate into a substantial risk
for market agents. As a result, measuring risk by evaluating price volatility
in energy markets represents the essential practice for electricity market stake-
holders (Figueiredo and da Silva, 2019). In this regard, the Generalized Au-
toregressive Conditional Heteroskedasticity (GARCH) models are frequently
utilized in the analyses of energy markets for their ability to efficiently take
account of irregular price behaviour, as Efimova and Serletis (2014) describe.
The authors find that univariate and multivariate GARCH models generate
similar estimates, yet the former are more accurate for forecasting purposes.
Although there are limitations in introducing additional explanatory variables
(as each regressor produces the entire vector of parameters) in the latter mod-
els, they are indispensable in tracking the interdependence among different
markets, which may reveal interesting spillover effects. Estimating trivariate
Baba-Engle-Kraft-Kroner (BEKK) of Engle and Kroner (1995) and Dynamic
Conditional Correlation (DCC) of Engle (2002), the authors find that the hi-
erarchy of influence from oil to natural gas to electricity markets is present in
the U.S. wholesale markets.

2.2.1 Leverage effect

Among the first studies that applied GARCH models to electricity prices, was
the one of Knittel and Roberts (2005) who examine the distributional and tem-
poral properties of electricity prices in California with the sample covering the
period right after the restructuring process in its electricity supply industry
took place. The authors employ the exponential GARCH (EGARCH) model
and document an inverse leverage effect, which means that electricity price
volatility has a tendency to rise more so with positive shocks than with neg-
ative ones. The intuition provided lies in regarding positive price surprises as
unanticipated positive demand shocks. These have necessarily a larger effect
on price changes relative to negative shocks as marginal costs are convex.

An inverse leverage effect is also detected by Bowden and Payne (2008) in
five hubs of the Midwest Independent System Operator (MISO). Similarly, Er-
dogdu (2016) analyses asymmetric volatility in 14 European day-ahead power
markets using high-frequency spot price data, EGARCH and threshold ARCH
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(TARCH) models. The author applies a distinct approach by considering each
hour in a day a separate market. The idea behind not treating prices as con-
tinuous variables (as most of the literature does) dates back to Huisman et al.
(2007) who claim that the market microstructure does not allow for the in-
formation set used for setting the price for delivery of energy to be updated
moving from one observation to the ensuing one in time. More concretely,
day-ahead markets are structured in such a way that agents submit their bids
and offers for delivery in all hours in the next day before market closing time,
meaning that hourly prices for the next day are determined at the same time.
As a result, applying directly the usual time series practice on hourly prices
would invalidate the fact that the information set does not vary within the day.
Bearing in mind such a procedure, Erdogdu (2016) shows that Poland, the CZ,
and Russia have the least volatile markets, while the opposite holds for Ireland,
France, and Portugal. Moreover, the findings indicate that changes in current
volatility would have less effect in CZ, Russia, and Turkey4 since the time taken
for volatility to die out following a shock in the market is shorter there. In con-
trast, the prices of the power markets in Nordic countries, Ireland, and the
United Kingdom exhibit a relatively large persistence in conditional volatility,
meaning that large changes in the volatility will affect future volatilities for a
longer period of time.

2.2.2 The case of renewable energy sources

Moving to the area in which this thesis believes to have a contribution, the
literature on the electricity price volatility regarding RES is presented. In
essence, the intermittent nature of renewable generation is considered to be
a contributing factor to an increased frequency of price spikes, and thus also
to greater volatility (Ballester and Furió, 2015). The riskiness owing to the
changeable weather conditions in the form of inaccurate forecasts represents a
considerable challenge for investors, energy traders seeking to make informed
decisions regarding the volume they can offer or bid and grid operators who
must balance supply and demand for regional and national grids (Shen and
Ritter, 2016). Hence, the management of conventional power plants has to be
adjusted to too little or too much wind and sunshine by providing sufficient ca-
pacity in the former event and curtailing the electricity production in the latter
one (Ketterer, 2012). For the sake of illustration, Woo et al., who investigate

4 The author explains that the term “European” is used in the most inclusive way.
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the impact of wind generation on the spot-price variance in Texas by means
of simulation techniques, show that a 10% increase in the installed capacity of
wind generation leads to about 1-5% accrual in price variance.

One of the most notable studies on renewable energy is that of Ketterer
(2012) who examines the effect of wind power generation on the electricity
prices in Germany, using an AR-GARCH model and covering the period from
2006 to 2012. The novelty of the works lies in introducing German wind power
generation as an explanatory variable in the mean and variance equations of
the model. The author is thus able to investigate how wind power generation
affects the level and volatility of electricity prices in an integrated manner.
The chosen methodology also allows for tracking the dynamics over time. In
this regard, the author finds that the volatility of the German electricity prices
decreased after the regulatory change in wind electricity marketing in 2010,
indicating that the market design can be used to lessen the volatility of the
electricity prices to some degree. Recently, Pereira da Silva and Horta (2019)
used a similar method to examine the impact of variable renewable energy
supply on price volatility on the Iberian market of electricity. The authors
find that RES (particularly, wind power) drive price volatility upwards and
quantify the effect of market coupling on the sensitivity of price volatility to
renewable power generation. On the example of coupling between French and
Spanish markets in 2014, they argue that such enhanced interconnection helps
mitigate the effect of RES production on price volatility. The idea is that
once markets that experience a transitory surplus in production are allowed to
transfer electricity to markets with a temporary supply shortage, price volatil-
ity can be less pronounced. Therefore, spatial arbitrage in different zones can
be executed even though the non-vanishing correlation in the form of the long-
term level of electricity prices does not permit inter-temporal exploitation for
profit due to the non-storability of electricity (see, Simonsen et al., 2004 or
Krištoufek and Luňáčková, 2013). The Czech day-ahead electricity market was
coupled through implicit auctions with day-ahead electricity markets in Slo-
vakia, Hungary, and Romania in 2009, 2012, and 2014, respectively (OTE, a.s.,
2020a). The market participants registered in these countries submit bids for
the purchase or sale of electricity that are matched jointly from the neighbour-
ing countries without the requirement to acquire transmission capacity (OTE,
a.s., 2020a).

Furthermore, Rintamäki et al. (2017) build a distributed lag model with the
data from Danish and German electricity markets in order to assess the impact
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of variable renewable energy on price volatility. Their major contribution lies
in dividing the dataset into peak (from 9:00 to 21:00) and off-peak hours (the
rest), thereby the authors determine the distribution of the price-decreasing
effect of RES over the day. They show that the two countries differ in the
effect of wind power on daily price volatility. While Denmark wind power
decreases the daily price volatility as a result of flattening the hourly price
profile, the German wind production behaves in the opposite direction as it has
a stronger effect on off-peak prices. The reason for such a contrasting finding
is attributed to Denmark’s large access to flexible generation in the form of
hydropower reservoirs, which is rather limited in Germany. In fact, as it was
noted earlier, the existence of these distinct, country-specific results provokes
the empirical analysis of this thesis. Daily price volatility in Germany is also
lessened by solar power (Danish solar power is omitted from the analysis due
to its then negligible capacity). Finally, the prices in both areas exhibit greater
weekly volatility which can be the result of the high day-to-day changes of
wind and solar power production. The pattern found here for Denmark wind
power production is in line with Mauritzen (2010) who works with Seasonal
Autoregressive Integrated Moving Average (SARIMA) models.

The effects of RES on the German electricity prices are also investigated by
Kyritsis et al. (2017) who analyze daily data from 2010 to 2015, i.e. the onset of
the ongoing transition of German electricity market towards renewables (known
as “Energiewende”). Under the framework of the GARCH-in-mean (GARCH-
M) model, it is shown that solar power generation decreases electricity price
volatility since it is characterized by lower variability. This leads to a more
efficient adjustment of other power plants to the residual demand. The opposite
effect on volatility is induced by wind power generation as highly variable wind
production varies the level of residual demand that should be accommodated by
the conventional power plants. Furthermore, in the context of Granger (1969),
the authors find that past information of solar and wind power generation
and total electricity load improves the forecasts of electricity prices beyond
the predictions that are built entirely on past electricity prices; that is, these
factors Granger-cause electricity prices.
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2.3 Electricity markets and renewable generation

2.3.1 Merit order curve

The special attributes of electricity markets indicated in the previous sections
play an integral role in the price building mechanism. As mentioned in Sec-
tion 2.1, electricity demand is absolutely inelastic in the short-run, which re-
flects the inability of consumers to change their consumption habits at least
in the foreseeable future and signifies that the supply curve is the only deter-
minant of prices (Krištoufek and Luňáčková, 2013). Electricity supply or the
merit-order curve is discontinuous, convex and steeply increasing in the event
of high demand (Kyritsis et al., 2017). The formation of the supply curve is
crucial for the understanding of the merit order effect (MEO) so it is prac-
tical to present a short discourse (which draws on Morales et al., 2013) into
this matter. When it comes to an auction-based market structure, agents on
the supply side make offers with the specified energy quantity that shall be
delivered along with the respective price. This price is related to a short-run
marginal cost or (in other words) the cost of generating an extra unit of en-
ergy. All generation offers are then ranked based on their short-run marginal
costs, giving rise to a global supply curve. The curve is not smooth precisely
because its rise occurs only when the market price reaches the marginal cost of
the next level plant (Krištoufek and Luňáčková, 2013). While the left segment
of the curve is occupied by lignite and hard coal power plants, i.e. those with
low marginal cost, the right side consists of gas and oil-fired power plants, i.e.
those with high marginal cost (Kyritsis et al., 2017).

In terms of renewable energy producers, the cost of generating an additional
unit of energy is, in essence, zero, which places offers from renewables on the
left part of the supply curve. Therefore, renewable generation is prioritized
over more expensive supply offers as it provides large quantities of electricity at
near-zero short-run marginal costs (Pereira da Silva and Horta, 2019). Based on
these characteristics, RES generation shifts the whole supply curve to the right,
pushing the most expensive generations out of the market, and conditional
on the particular inelastic demand curve, it induces a lower electricity price
(Kyritsis et al., 2017). It is important to stress out that this process known as
MOE holds for the wholesale price, the price of consumers is influenced by the
costs for the support of renewables as well, implying that the conditions may
be opposite for end-users (Ketterer, 2012).
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2.3.2 Merit order effect

Numerous papers examine the MOE of RES power generation and they almost
unanimously report that renewable generation has a negative impact on elec-
tricity prices. The studies assessing the effect are predominantly concerned with
the regions where high penetration of RES power generation was established,
such as Nordic countries, Germany, or Spain. To show a wide array of meth-
ods for detecting the MOE, the works of Azofra et al. (2015) and Maciejowska
(2020) represent apposite examples. Using artificial intelligence techniques to
model the formation of prices at electricity market auction (a tree model of
the spot market is created based on M5P learning algorithm), Azofra et al.
(2015) analyze the MOEs induced by photovoltaics (PV) and wind power on
electricity prices in Spain. They find that both renewable technologies curtail
electricity prices on the spot market, namely by 9.10 EUR/MWh in case of
wind power and by 2.18 EUR/MWh in case of PV power. On the other hand,
Maciejowska (2020) evaluates the impact of RES on the level and variability
of German electricity spot prices employing quantile regression, allowing to ac-
count for nonlinearities in the relationship between fundamental variables and
the prices of electricity. The effect of renewables and load on the quantiles
of the spot prices is thus conditioned on the total demand level. The results
indicate that both wind and PV have a similar, negative effect on the level of
prices (approximated by their median). However, when the impact of RES on
the range of price quantiles is considered, solar has a stronger dampening effect
on higher tails, while wind on lower tails of the price distribution. This can be
explained by the different impact of each RES on electricity prices as described
by Rintamäki et al. (2017).

Moreover, Cataldi et al. (2015) analyse the Italian day-ahead wholesale
electricity market over the period from 2005 to 2013; that is, the years that
marked a substantial growth in RES power generation there. The authors
detect the MEO by determining that 1,000 MWh from solar and wind sources
lowered (on average) electricity prices by 2.3 EUR/MWh and 4.2 EUR/MWh,
respectively. They also evaluate the impact of RES production on the final
consumers of electricity. While monetary savings generated by solar production
are found to be insufficient for compensating the cost of accompanying support
schemes that are charged on final electricity prices, implying that the consumer
surplus is reduced, the opposite happens in case of wind production. This
can be explained by the fact that solar production is more prominent in Italy
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than wind production, and hence larger financial resources are needed for its
promotion. In contrast, the decreasing trend in net monetary benefits (i.e.
savings minus costs internalized in end-user tariffs) is shown for both solar and
wind which is attributed to the increase in intermittent RES power generation.
The relationship between household electricity prices and renewable energy
sources is additionally investigated by Moreno et al. (2012) who utilize a panel
data set comprising of entries from 27 European Union countries during the
period from 1998 to 2009. Although it is suggested that final electricity prices
rise with the deployment of RES (as a result of RES support systems financed
by the households), the additional costs passed on consumers can be offset by
indirect benefits to society. More specifically, the high energy dependence of
the EU on imported resources (e.g. crude oil or natural gas) may be lowered
by the roll-out of renewable energies. This would result in reduced electricity
prices as the findings of the study imply that electricity prices increase with
the intensified energy dependency.

Paraschiv et al. (2014) also inform about the dampening impact of renew-
able energies on day-ahead electricity prices at EEX, concluding that the effect
of wind power is apparent during afternoon, evening and nights hours, and dur-
ing noon peak hours in solar power case. The results additionally indicate that
the substitution effect in electricity production between traditional fuels and
RES came about during the analyzed period (from 2010 to 2013) in Germany
as the sensitivity of electricity prices to gas diminished over time. This outcome
is attributed to augmented PV infeed because the convenient characteristics of
gas power plants in the form of high operational flexibility and short ramp-up
time make them price-setting during peak hours, i.e. hours of high demand and
high solar radiation. Hence, the margins of traditional producers are decreased
by lower price level, which is even more noticeable during night hours when the
substantial wind feed-in can cause downside spikes and also negative prices.

2.3.3 Negative prices

Generally speaking, the mechanism behind such a practice is that the genera-
tors may be unwilling to generate power at prevailing prices, yet they still bid
negative prices since the costs of shutting down and subsequent ramping up of a
unit of a power plant is greater than the loss associated with accepting negative
prices (Erdogdu, 2016). In case of medium-load plants, the actual bid is consid-
ered to be very close to zero (Erdogdu, 2016). For base-load plants (lignite and
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nuclear plants), the situation is more extreme as the utilities may pay up to e.g.
120 EUR/MWh and more at EEX to manage the excess of electricity generated,
as Keles et al. (2012) describe. According to these authors, that is probably
why the distribution of negative prices is bimodal or two-peaking there (one
near 0 EUR/MWh and the other one near −120 EUR/MWh). Furthermore,
the latter power plants are reluctant to shut-off also due to opportunity costs
which could emerge when the prices above their variable costs (i.e. fuel and
CO2 costs) arise and the plants are not activated in time. This is pointed out
by Nicolosi (2010) who investigates the flexibility of the German power market
with respect to the increasing share of electricity from wind in the period from
2008 to 2009. The author shows that low load, high wind power penetration
combined with an inflexible power mix result in highly negative prices. With
regard to the Czech and Slovak electricity market, negative prices were allowed
on February 1, 2012 (OTE, a.s., 2012). These day-ahead markets can be re-
opened to update bids to correct exceptional conditions once the price exceeds
the upper threshold value of 500 EUR/MWh or the lower threshold value of
−150 EUR/MWh (OTE, a.s., 2012).

2.3.4 Cross-border electricity interconnections

Owing to the interconnection between German and Czech electricity markets
through electricity flows and export which is similar to that of Dutch and Ger-
man electricity markets (Luňáčková et al., 2017), it is reasonable to highlight
the work of Mulder and Scholtens (2013). They examine the effects of weather
conditions in the Netherlands and Germany on the average daily day-ahead
price in the APX market. Over the analyzed period from 2006 to 2011, average
wind speed in Germany was found to drive Dutch electricity prices downward
(1% increase in German wind energy translated into a 0.03% decrease in the
Dutch electricity prices). It did so in a constant manner despite the fact that
German wind energy capacity was magnified during the given years. Interest-
ingly, the effect of wind speed in the Netherlands on the Dutch electricity prices
was relatively small, reflecting the lower quantity of the installed wind capacity
in the Netherlands as opposed to the generation in Germany. Moreover, since
no robust impact of the intensity of sunshine on APX prices was discovered,
the growth of solar generation did not seem to induce a change in the Dutch
average electricity price at that time.

Concerning the Czech cross-border infrastructure, the installation of phase-
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shifting transformers at Czech-German interconnectors was completed in March
2017, allowing to eliminate possible overflows in the transmission system (ČEPS,
a.s., 2017). The congestions arising in the German grid due to its inability to
accommodate a large amount of feed-in of intermittent RES had previously
propagated towards the grids in adjacent countries, the CZ and Poland (Janda
et al., 2017). In this respect, Singh et al. (2016) show that the accrual in the
number of physical flows from Germany to the region of Central and Eastern
Europe was connected to the growth in installed wind power capacity in the
first-named country. In total, there are cross-border interconnections with five
transmission systems between the CZ and adjoining countries (ERÚ, 2019a).
More specifically, 50Hertz and TenneT (German TSOs), APG (the Austrian
TSO), SEPS (the Slovak TSO), and PSE (the Polish TSO) form this system.

2.3.5 Czech electricity market

Among the studies related to Czech renewable energy, Luňáčková et al. (2017)
assess the corresponding electricity spot market in the span of 6 years from
2010 to 2015, i.e. the period when the CZ experienced the largest accrual in
the number of renewable generation capacity. Using the Prais-Winsten method-
ology and analysing the two groups of renewables (solar and other RES except
for solar) motivated by the prevalence of solar power in the CZ, the authors
offer a contrasting perspective on the MOE when compared to the majority of
literature. Curiously, the results indicate that the Czech solar power generation
did not lower electricity spot prices, which ultimately generated double cost to
the end costumers in the form of subsidies and the inverse MOE. Specifically,
a 10% increase in solar production resulted in a 0.7% price increase, under-
lining the improper implementation of support schemes in the CZ. In case of
RES excluding solar (particularly, water and wind), the findings are in agree-
ment with other studies reporting the price-dampening effect of RES. A 10%
increment in the production of RES excluding solar led to a 2.5% reduction in
electricity prices over the investigated period. Overall, it could be said that the
absolute value of the Czech MOE is lower than that in other countries, which
is explained by the dominant position of solar plants that does not reflect the
natural environment sufficiently (Luňáčková et al., 2017). Stated differently,
the mix of RES is perhaps established in line with geographic conditions better
in other locations, inducing each RES to contribute to the total MOE.
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Table 2.1: Czech electricity production and installed capacity

Power Plant Type 2015 2016 2017 2018
Prod.∗ IC∗∗ Prod. IC Prod. IC Prod. IC

Nuclear 26,840.8 4,290 24,104.2 4,290 28,339.6 4,290 29,921.3 4,290
Thermal 44,816.5 10,741.9 45,704.1 10,850.0 45,431.7 11,075.4 45,070.8 11,075.4
Combined cycle 2,749.0 1,363.3 4,049.2 1,363.5 3,722.4 1,363.5 3,690.9 1,363.5
Gas fired 3,574.7 855.9 3,613.9 874.0 3,719.6 895.9 3,690.4 910.9
Hydro 1,794.8 1,087.5 2,000.5 1,090.2 1,869.5 1,092.7 1,628.8 1,092.5
Pumped storage 1,276.0 1,171.5 1,201.5 1,171.5 1,170.5 1,171.5 1,050.6 1,171.5
Photovoltaic 2,263.8 2,074.9 2,131.5 2,067.9 2,193.4 2,069.5 2,339.7 2,056.8
Wind 572.6 280.6 497.0 282.0 591.0 308.2 609.3 316.2

Note: ∗Production (“Prod.”) is reported in GWh, while ∗∗Installed Capacity (“IC”) is re-
ported in MWh.
Source: ERÚ (2019b).

Such facts can also be observed in Table 2.1 which presents the develop-
ment of the Czech installed capacity and production covering the period from
2015 to 2018. Based on the figures, solar plants do not exhibit reasonable ef-
ficiency ratio, i.e. production over installed capacity (Luňáčková et al., 2017).
Moreover, unlike the period from 2008 to 2012, when the installed capacity of
Czech solar power plants grew from 39.5 MW to 2,086.0 MW (ERÚ, 2019b),
the figure seems to stand at a standstill during the recent years. This has
arisen due to the abolishment of support for most renewables built after 2014
(Janda et al., 2017). Additionally, it can be traced that wind accounts for the
smallest share both in production and installed capacity. Finally, that the dif-
ference between installed capacity and production is particularly pronounced
is discernible from the case of nuclear power plants. Indeed, domestic coal
and nuclear power dominates the Czech energy production (Rečka and Ščasný,
2016).



Chapter 3

Hypothesis formation

The target of this thesis is to investigate the relationship between the intermit-
tent sources of energy and electricity prices in the CZ. This chapter outlines
in which directions the analysis will precisely be heading. In accordance with
the literature on RES and theoretical background of the MOE, every type of
renewable generation can drive prices downward (Kyritsis et al., 2017) because
of their low short-run marginal costs. On that account, the first hypothesis is
formulated as follows:

Hypothesis #1: Both Czech solar and wind power generations have a
dampening effect on Czech day-ahead electricity prices.

Obviously, that we do not treat solar and wind power as a combination of
energies under the label of intermittent renewables prevents us from ignoring
singular features attached to each generation resource. This is particularly
apparent when electricity prices are divided into the different “blocks” of a
day, which is also our case. For instance, Ballester and Furió (2015) conclude
that only when peak (from 8:00 to 20:00) and off-peak (the remaining hours)
prices are regarded separately, some effects stemming from renewables infeed
emerge. To put it differently, by dividing the data into these intervals, we
would be able to infer how the expected price-depressing effect of either solar
or wind power generation is distributed throughout the day (Rintamäki et al.,
2017).

Generally, RES installed capacity is indeed subject to fluctuating weather
conditions, thereby making prices themselves more sensitive to weather events,
and thus more volatile. Additionally, this may change the optimal generation
mix to a substantial extent as more flexible generation technologies charac-
terized by high variable costs must be employed to guarantee that electricity
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supply will meet a high level of demand (see, for example, Pereira da Silva
and Horta, 2019, and Pérez-Arriaga and Batlle, 2012). Therefore, the key
point is that conventional sources of electricity cannot be merely substituted
for intermittent RES that are predominantly characterized by variability and
corresponding unpredictability. We would hence test whether RES generation
amplifies electricity price volatility in the Czech electricity market. Neverthe-
less, disentangling again the anticipated impact of solar and wind power gen-
eration and conditioning on the above mentioned “blocks” of a day (marked
by different load profiles and appropriate production design as described by
Paraschiv et al., 2014), the hypothesis has to be adjusted accordingly. That
is to say, solar power is produced predominantly during peak hours when ex-
cess demand is assumed, and thus its production is easier to accommodate
(Luňáčková et al., 2017). Since solar power exhibits low variability (Kyritsis
et al., 2017), implying that its dampening impact on high peak hour prices is
more or less stable during peak hours (Paraschiv et al., 2014), it should reduce
price volatility (Rintamäki et al., 2017).

Hypothesis #2: In the Czech Republic, the penetration of solar power
into the power system decreases the volatility of day-ahead electricity
prices.

On the contrary, wind may evolve with greater frequency at night when low
demand levels as a result of human diurnality and closed businesses typically
occur. Extra supply from wind energy can thus be responsible for plentiful
downside spikes (Paraschiv et al., 2014 or Keles et al., 2012). Accordingly, the
hypothesis is established in the following way:

Hypothesis #3: In the Czech Republic, the penetration of wind power
into the power system increases the volatility of day-ahead electricity
prices.



Chapter 4

Data

In this chapter, data employed in the econometric analysis are described, the
motivation for the inclusion of specific variables and the corresponding sum-
mary statistics are presented. Necessary unit root and stationarity tests are
performed as well.

4.1 Data description
We analyze the Czech day-ahead electricity spot prices. Data with an hourly
frequency were obtained from the Yearly Reports of Czech Electricity and Gas
Market Operator (OTE). The prices are classified either as peak if they fall
within the range from 8:00 to 20:00 or off-peak provided that they belong to
the remaining trading hours; base load is defined for all hours of the day (OTE,
a.s., 2020b). In keeping with Maciejowska (2020), we convert the time series
from hourly observations into daily, peak, and off-peak indices. The indices
are calculated as the arithmetic mean of the corresponding variables across all
hours, peak hours, and off-peak hours, respectively. Furthermore, the peak
indices that account for times with the highest electricity demand are limited
to working days, and thus the off-peak indices are identical to the daily indices
on weekends. Provided that the holiday falls on a working day, we proceed
in the same vein. It should be stressed out that the trading practice on the
Czech electricity market which is executed in bid blocks (base, peak, and off-
peak as described in OTE, a.s., 2019) is not followed in our analysis. If this
was a case, then off-peak indices would be restricted to working days as well
(OTE, a.s., 2019). Our approach is motivated mainly by the patters of human
activity reflected in lower demand for electricity over the weekend when major
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enterprises do not operate (Simonsen et al., 2004). To unify the period of low
demand which also coincides with off-peak hours during working days, the off-
peak index is extended to Saturday and Sunday. All of this will allow us to
view the prices as three different time series. The prices are denominated in
EUR/MWh.

Among other variables of interest, there are solar and wind power genera-
tions. Since the aim of this thesis is to track the changes in the behaviour of
day-ahead electricity prices induced by RES, the predicted (rather than the re-
alised or actual) power generation should be utilized. This follows from the fact
that participants on a day-ahead market do not have the information about the
actual power generation at their disposal when they determine their bids, only
the respective foreseen values may be available for market clearing (Kyritsis
et al., 2017). The possibility that the market participants do not have the in-
formation about the RES forecasts when submitting their bids is explained as
follows. While the participants on the Czech day-ahead spot electricity market
are no longer eligible to submit their bids after 11:00 when the market closes
(OTE, a.s., 2019), the forecasts of RES power generation can still be published
up to 18:00 Brussels time, one day before the actual delivery is carried out
(European Comission, 2013). Therefore, prices and volatility may not even
be influenced by bidding decisions. Since more convenient data do not exist,
we continue to assume that the bidders have the knowledge of the generation
forecasts (this is in accord with Líšková, 2017). We thus employ forecasts for
solar power generation from the Transparency Platform operated by the Euro-
pean Network of Transmission System Operators for Electricity (ENTSO-E).
As there are several missing hours in the data, the adjustment is warranted.
In line with Rintamäki et al. (2017), the realised values for solar generation
are utilized accordingly. Nevertheless, given that the figures for wind power
generation forecasts are not published, we opted for using the realized values
from the Czech TSO (ČEPS, a.s., 2020) as an approximation. This is in line
with the literature; for example, see Nicolosi (2010) or Kyritsis et al. (2017).

To contextualize the position of renewables on the electricity market, load
data reflecting the demand for electricity are additionally analysed.1 That is to
say, the same amount of RES electricity can have a different effect during the
episodes of high and low electricity demand. In the spirit of Ketterer (2012),
we claim that no endogeneity problems should arise by the inclusion of the

1 Total load is defined as “generation and any imports deducting any exports and power
used for energy storage” (European Comission, 2013).
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load variable since demand for electricity is supposed to be independent of
wind and solar feed-in. The exogeneity of selected variables originates in price
insensitivity and inelastic character of daily electricity demand (as explained
in Chapter 2) and from weather conditions upon which the RES production is
contingent, which excludes any strategic bidding on the basis of price dynamics,
as pointed out by Cataldi et al., 2015. In line with these authors, dispatchable
sources like gas, coal, and hydro are omitted from the analysis as their inclusion
may bring about the endogeneity issue in the regressions due to the dispatching
rule. Additionally, omitting weather data from our analysis is motivated by
the fact that such a practice would produce bias in the analysis stemming from
double counting. More specifically, weather conditions are already considered in
the load forecast and forecasts of RES generation as TSOs factor temperature
affecting electricity consumption, predicted solar radiation, and wind speed
into the information they publish (Lago et al., 2018). To conclude this section,
we inform that day-ahead total load forecasts are also obtained from ENTSO-
E Transparency Platform (2020), and as well as in case of RES generations,
they are quoted in MW. The resulting sample covers the period spanning from
January 1, 2015, to December 31, 2019, since earlier ENTSO-E data are not
available.

4.2 Visual inspection
In this section, the graphical representation of the selected variables is explored
in order to acquire overall insight into the research questions and to identify
elements that will be of particular interest in the econometric part of the thesis.

A great variety of stylized facts of electricity prices is noticeable from their
time path in Figure 4.1. Year cycles when prices tend to decrease during the
first half of the year and subsequently rise gradually upon reaching their peak
in the winter are especially pronounced. A mean-reverting aspect of electricity
prices, episodes of high volatility following the stages of comparative tranquil-
ity, and abrupt price spikes can also be identified. In terms of seasonal patterns
of RES, while wind power production generates energy most of the year and
exhibits high volatility as a result of its intermittency, solar power production
culminates mainly over the summer months due to the extension of daytime
and is characterized by greater stability. It can also be recognized that wind
generation follows the inverse seasonal path than that of solar generation to
some extent. According to Kyritsis et al. (2017), this complementarity may
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represent a feature on which a hybrid power generation system can capitalize.
Furthermore, by occurring at its highest value during the winter and declin-
ing progressively in the middle of the year, total electricity load reflecting the
demand profile follows a similar year development as wind power production.
The differences among the fundamental variables are presented in Figure 4.2
which accentuates the fact that the installed solar capacity in the CZ generates
a much higher share of total electricity than the wind capacity (see Table 2.1).
The approach towards treating yearly as well as weekly periodicity is described
in the next subsection.

Figure 4.1: Electricity prices and fundamental variables by daily in-
dex

Note: Time paths of (a) electricity prices, (b) total electricity load, accounting for demand
profile, (c) solar power generation, and (d) wind power generation reveal common annual
patterns reflecting calendar seasons. Given the geographic conditions of the Czech Republic,
the output from solar plants escalates during summer months, while that from wind farms
during winter times. Load exhibits the highest values also during winter months due to
greater demand for lighting and inhouse heating. This regularity is translated into electricity
prices to some extent as upward tendencies during the second halves of the analyzed years
are noticeable.
Source: Author’s computations.
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Figure 4.2: Comparison of fundamental variables by daily index

Note: The dotted line illustrates load, while the transparent line and the black line denote
solar and wind power generations, respectively. It follows that both RES generations cover
only a fraction of the total Czech demand for electricity. Such an actuality also emerges from
Table 2.1. This signifies that, for instance, wind feed-in is not able to bring about the same
number of negative prices, if any, in the Czech Republic as does onshore and offshore wind
in Germany, where it produced 127,200 GWh of power (compare it with the figures for the
Czech wind farms in the above mentioned table from Section 2.3) in 2019 (Eckert, 2020).
Source: Author’s computations.

The differences between the variables across different hours can be tracked
in Figure 4.3. A glance at the price development uncovers the erratic nature
of the electricity prices. It can be inferred that positive price spikes are more
frequent during the peak hours, while negative jumps are considerable during
the off-peak hours. In total, both time series of prices and load exhibit values
of greater magnitude during the peak hours. With respect to the intermit-
tent fundamentals, wind generation is distributed during the whole day evenly,
whereas solar generation naturally does not conform to the uniform develop-
ment throughout the day. In fact, that the solar radiation is weak during the
off-peak hours, and hence the production executed over this block constitutes
a smaller portion of the peak production (Maciejowska, 2020), is another rea-
son for working with different indices. Based on Table 4.1, it can ultimately
be determined that the average off-peak solar generation merely represents
18.28% of its mean peak value. These results are consistent with the analysis
of Maciejowska (2020).
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Figure 4.3: Comparison of peak and off-peak indices

Note: In every figure, the black line illustrates the respective peak series and the transparent
line denotes the off-peak series. The comparison between peak and off-peak electricity prices
(a) uncovers that upward movements are more frequent in the former case, whilst downward
shifts in the latter one. This can be connected to the combination of abundant power gen-
erated and low demand during nighttime. Furthermore, both price and load series (b) reach
higher values during peak hours and lower values during off-peak hours, which mimics the
augmented and reduced level of human activity, respectively (Simonsen et al., 2004). With
reference to the solar power, plots in (c) mark out that its production is indeed immensely
dependent on hours of interest. In contrast, the difference between the peak and off-peak
wind power production (d) seems to be inconsiderable, which is most likely attributable to
the Czech natural environment.
Source: Author’s computations.

4.3 Descriptive statistics
This part complements the previous section in that it provides quantitative
information which will be instrumental in the identification of matters requiring
a more in-depth treatment.

Descriptive statistics in Table 4.1 uncovers that with a mean value of 37.23
EUR/MWh, the daily price series reached its minimum and maximum values
of −19.59 EUR/MWh and 91.80 EUR/MWh, respectively, during the sample
period. As expected in the context of smaller demand, the spread between these
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two values is lower for off-peak prices. Compared to the standard deviation of
peak prices which is 13.793, the one of off-peak prices accounts for 10.595,
signifying that higher stability is exhibited during the first 8 and last 4 hours
of the day, weekends, and holidays. The signs of the skewness coefficients (that
would have been zero for symmetric distribution) are positive in case of all
variables, meaning that that the tail on the right side of the corresponding
distributions is longer than that on the left side. In other words, high extreme
values are more probable than low extreme values. In this respect, it is worth
noting that the skewness estimate of off-peak prices (0.045) is much lower
than for peak prices (1.185). This highlights the regularity learnt through
observation in Figure 4.3 that negative values for price series are less likely
to occur during the hours between 8:00 and 20:00. The skewness estimate of
off-peak solar power generation is rather exceptional (1.754) and also signifies
that a larger amount of sunshine emanated over the morning and early evening
hours is not an unusual incident. The estimates of kurtosis for price series
exceed the value of three representing the kurtosis for a normal distribution,
which means that extremely low and high prices are more probable than what is
signalised by a normal distribution (Lucia and Schwartz, 2002). After all, large
variations are relatively frequent in electricity prices as displayed in Figure 4.1
and Figure 4.3. The values of kurtosis are similar across all indices (4.315,
5.494, and 4.143 for daily, peak, and off-peak indices, respectively).

Table 4.1: Descriptive statistics

Index Variables Mean Min Max St. Dev. Skewness Kurtosis

Daily

Prices 37.230 -19.590 91.800 12.502 0.287 4.315
Load 7434 5267 10029 997.842 0.172 2.429
Solar 254.560 11.210 594.250 154.996 0.121 1.761
Wind 63.992 1.012 232.625 46.440 1.095 3.663

Peak

Prices 46.720 20.090 123.690 13.793 1.185 5.494
Load 8587 6613 10950 869.903 0.389 2.268
Solar 494.090 22.250 1142.330 293.415 0.101 1.765
Wind 60.250 0.842 227.442 50.331 1.106 3.531

Off-Peak

Prices 33.270 -19.590 68.200 10.595 0.045 4.143
Load 6949 5267 9262 831.957 0.410 2.354
Solar 90.320 0.000 586.540 142.713 1.754 4.772
Wind 66.125 1.012 237.033 45.456 1.097 3.793

Note: There are 1826 observations in case of daily and off-peak indices and 1253 observations
in case of peak index. Prices are reported in EUR/MWh, while load, solar, and wind power
generations in MW.
Source: Author’s computations.
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Once more, off-peak solar generation represents an interesting phenomenon
on the energy market since its kurtosis estimate of 4.772, far in excess of 3,
is more than 2.7 times higher than the respective generation during the peak
hours. The distribution is leptokurtic (as is also the case for price series across
all indices) and more of the variance can be attributed to infrequent extreme
deviations contrary to frequent modestly sized deviations (Erdogdu, 2016).
When it comes to wind power generation, the differences between the peak and
off-peak values of the summary statistics are not critical. As it was mentioned
previously, this indicates that wind generation is distributed more or less evenly
throughout the day. This can be supported by the fact that the mean of peak
wind generation stands for 91.11% of the average of off-peak wind generation
and emphasizes the distinct nature of solar and wind power generations when
the figure is contrasted with the concluding piece of information in the previous
section. Finally, daily load spans from 5267 MW to 10029 MW with the mean
of 7434 MW during the sample period. Its excess kurtosis (−0.5712) suggests
that it has a platykurtic distribution characterized by short tails (or thinner
than a normal distribution). To put it differently, fewer demand shocks, that
are frequently connected to short-term changes in temperatures (Lucia and
Schwartz, 2002), are present in the load series.

4.4 Data preprocessing

4.4.1 Outliers detection

As we outlined in the preceding chapters, the presence of RES in the electrical
power grid is expected to produce extreme prices. The electricity price series
plotted in Figure 4.1 and Figure 4.3 indicate that some outliers in the form of
large positive and negative spikes could be found in the data. Generally, the
analysis of trend, seasonality, and price predictions may be strongly affected
by the occurrence of outliers (Benth et al., 2008). Therefore, before estimat-
ing parameters in trend and seasonal functions, it is advantageous to remove
these outliers. Detecting the possible outliers in data that are not normally dis-
tributed is allowed by the statistics presented below. The electricity price series
under investigation departs from normal distribution as indicated by the corre-
sponding descriptive statistics in the previous section and shown in Figure 4.4
(this only for daily index). It displays that the empirical or sample quantiles
do not coincide with the quantiles of the normal distribution (represented by
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a line in the plot) at their extremes. The heavy tails of the distribution and
mass observations at zero show that electricity prices indeed deviate from nor-
mality. It is worth noting that these patterns result from the salient features
of electricity prices, along with the possibility of their negative values (Knittel
and Roberts, 2005), described in the theoretical background.

Figure 4.4: QQ-plot of electricity prices by daily index

Note: The superimposed transparent line connects the first and third quartile of the data and
normally distributed data would appear linear in the plot (Knittel and Roberts, 2005). It is
shown that the empirical (or sample) quantiles do not coincide with the theoretical quantiles
(that is, those of normal distribution), indicating that the distribution of our electricity price
series displays heavy tails. This is linked to the skewness value that is affected by weekly
seasonality (Weron, 2006).
Source: Author’s computations.

The ensuing simple statistics pursued by Benth et al. (2008) in their em-
pirical analysis of gas spot prices is used for the detection of outliers. An
observation is considered an outlier if it is either smaller than Q1 − 3 × IQR or
larger than Q3 + 3 × IQR, where Q1 and Q3 are the lower and upper quartiles,
respectively, and IQR is the interquartile range defined as the difference be-
tween the upper and lower quartiles. Following Benth et al. (2008), the average
of the two adjacent observations is substituted for the detected outliers. In the
context of unravelling the relationship between RES and electricity prices, such
an approach was utilized by Ballester and Furió (2015). After the first round
outliers had been treated as described above, the outlier detection was carried
out again. The second round captured 2 outliers, suggesting that the pricing
mechanism on these days had been particularly non-standard.
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4.4.2 Trends and seasonality

Furthermore, as it is was stated in the context of Figure 4.1 and Figure 4.3,
strong seasonal cycles are present in our “raw” price series. On that account,
the prices would exhibit high correlation across trading blocks even if clus-
tering of power prices did not occur (Guthrie and Videbeck, 2007). We thus
intend to guarantee that any high correlation that would be discovered later
on is attributed to price clustering and not to some long-run predictable price
patterns. These movements arising from intriguing regularities along the time
passage are captured by dummy variables using Boolean logic in our case. The
reason for the inclusion of dummy variables is that they are more flexible when
compared to other cases when the functional form is fixed a priori (Lucia and
Schwartz, 2002). Therefore, in order to remove as much of the predictable el-
ements in prices as possible and at the same time to conform to the principle
of parsimony to avoid overspecification, the following deterministic functions
based on Luňáčková et al. (2017) and Pereira da Silva and Horta (2019) are
utilized:

fdaily(t) = α +
7∑︂

i=2
βidit + γht +

4∑︂
j=2

δjyjt + ζt∗, (4.1)

foff−peak(t) = α +
7∑︂

i=2
βidit + γht +

4∑︂
j=2

δjyjt + ζt∗, (4.2)

fpeak(t) = α +
5∑︂

i=2
βidit +

4∑︂
j=2

δjyjt + ζt∗, (4.3)

where dit is a binary variable that takes the value of 1 on weekday i (i = 2, . . . , 7
for daily and off-peak indices and i = 2, . . . , 5 for peak index) and 0 otherwise,
ht is a dummy variable assuming the value of 1 if holiday falls on date t (t =
1, . . . , T ) and 0 otherwise (hence, deterministic function for the peak index
does not contain such a parameter), yit is a binary variable that assumes the
value of 1 if date t belongs to the j-th month (j = 2, 3, 4) and 0 otherwise, and
t∗ accounts for a time trend. All coefficients are constant parameters (Lucia
and Schwartz, 2002). It is worth noting that linear time trend was used by
Weron et al. (2004) in their approximation of the yearly cycle of Nordic spot
prices. Similar to Luňáčková et al. (2017), insignificant monthly dummies were
discarded based on F -test due to potential overfitting. The same applies to
quadratic time trend (see for instance Solibakke, 2002). In our formulation,
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Monday and year 2015 represent reference variables.

Table 4.2: Determinitic patterns in electricity prices

Variables Daily Index Peak Index Off-Peak Index
Coefficient Coefficient Coefficient

Intercept 31.384∗∗∗
(38.253)

36.511∗∗∗
(31.253)

25.940∗∗∗
(35.701)

Tuesday 0.953
(1.164)

−0.101
(−0.095)

1.903∗∗∗
(2.623)

Wednesday 1.50862∗
(1.840)

0.025
(0.023)

2.331∗∗∗
(3.210)

Thursday 0.850
(1.038)

−1.201
(−1.131)

2.190∗∗∗
(3.018)

Friday 0.505
(0.617)

−1.906∗
(−1.782)

2.040∗∗∗
(2.813)

Saturday −7.611∗∗∗
(−9.287)

−1.068
(−1.472)

Sunday −12.973∗∗∗
(−15.837)

−6.483∗∗∗
(−8.936)

Holiday −14.134∗∗∗
(−11.921)

−9.455∗∗∗
(−9.005)

Year 2016 −8.797∗∗∗
(−8.559)

−11.114∗∗∗
(−7.054)

−7.599∗∗∗
(−8.348)

Year 2017 −11.030∗∗∗
(−6.603)

−13.083∗∗∗
(−5.109)

−9.462∗∗∗
(−6.396)

Year 2018 −9.198∗∗∗
(−3.861)

−14.726∗∗∗
(−4.036)

−5.519∗∗∗
(−2.616)

Year 2019 −22.642∗∗∗
(−7.266)

−32.048∗∗∗
(−6.715)

−16.749∗∗∗
(−6.069)

Trend 0.021∗∗∗
(10.049)

0.040∗∗∗
(8.590)

0.017∗∗∗
(9.165)

Note: The table presents three ordinary least squares (OLS) regressions with a time trend
and a set of seasonal and annual binary variables implemented to capture the predictable
component in the dependent variable, Czech electricity prices that have been corrected for
outliers. Monday and the year 2015 are used as base variables. The values in parentheses
are t-statistic corresponding to the estimated coefficients. Two-side statistical significance at
the 1% level is denoted by ‘∗∗∗’, at the 5% level by ‘∗∗’, and at the 10% level by ‘∗’.
Source: Author’s computations.

The outcome of the deseasonalizing procedure is presented in Table 4.2.
It confirms the anticipated development of daily and off-peak prices through-
out the week when their values are higher in the beginning and subsequently
diminish from Fridays, upon reaching their minimum on Sundays that is al-
most 13 EUR/MWh and 6.5 EUR/MWh less than the appropriate level on
2015 Mondays across daily and off-peak indices, respectively. Peak prices un-
dergo a similar development over the working days, albeit the coefficients are
mostly insignificant. The inclusion of these variables in Equation 4.3 is thus
mainly motivated by keeping deterministic functions across indices as similar
as possible. Peak prices during Fridays witness relevant price reduction when
compared to Mondays (in 2015). In contrast to prices recorded during the first
day of the week, the substantial diminution is also observed in case of holidays
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since daily and off-peak prices are more than 45% and almost 36.5% lower, re-
spectively, during these non-working days. This is perfectly in accordance with
our anticipations since these special days are characterized by smaller demand
given the closed business operations. The presence of a time trend is detected
across all indices. Yearly dummies account for the deviations of the price av-
erages for that particular year from the respective average determined by the
time trend, meaning that the corresponding negative coefficients actually do
not signify that the price level is lower in years after 2015. Indeed, once the
time trend is removed from the analysis, coefficients are positive, underlying
the increasing tendency identifiable in Figure 4.1 and Figure 4.3. In line with
Ketterer (2012), we ultimately deduct the seasonal and trend component from
the original daily price series and add the mean of this original price series to
the residuals, i.e. the deseasonalized daily price series. The same is applied to
prices across peak and off-peak indices. Last but not least, in order to visualize
deseasonalization procedure, the raw and adjusted price series by daily index
are plotted in Figure 4.5.

Figure 4.5: Raw and filtered electricity prices by daily index

Note: The black line shows the development of electricity prices that have not been subject
to the trend and calendar effects removal (i.e. raw price series). On the other hand, the
transparent line illustrates the electricity prices that have been adjusted for daily, holiday,
annual, and trend effects (i.e. filtered price series). It is discernible that the deseasonal-
ized prices exhibit less foreseeable patterns than what is true for the unadjusted ones. For
instance, notice how the price level during the spring and summer of 2016 is greater and
during the second half of 2019 lower when compared to the original prices, suggesting that
the deterministic function in Equation 4.1 has been successfully implemented.
Source: Author’s computations.
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Finally, in agreement with Líšková (2017), the exogenous variables are also
subject to trend analysis. Provided that a trend has been detected in the re-
spective time series, it is removed through the similar procedure performed
above. As outlined by Wooldridge (2013), detrended time series are accom-
plished by saving the residuals from a regression of the exogenous variable on
a constant and a time trend. The results of such a procedure are displayed
in Table 4.3. It follows that load and wind generation across all indices will
be detrended due to the significance of the corresponding trend parameters,
while solar generation across all indices will be kept in its original state as no
trending behaviour is detected in this case.

Table 4.3: Regressions with a time trend

Index Variables Intercept Time trend

Load 7327∗∗∗
(157.076)

0.118∗∗∗
(2.666)

Day Solar 249.9∗∗∗
(34.426)

0.005
(0.746)

Wind 56.714∗∗∗
(2.166)

0.008∗∗∗
(3.879)

Load 8285∗∗∗
(171.878)

0.4815∗∗∗
(7.231)

Peak Solar 479.348∗∗∗
(28.898)

0.024
(1.026)

Wind 53.365∗∗∗
(18.806)

0.011∗∗∗
(2.801)

Load 6879∗∗∗
(176.740)

0.077∗∗
(2.089)

Off-Peak Solar 90.709∗∗∗
(13.571)

−0.0004
(−0.068)

Wind 58.538∗∗∗
(27.625)

0.008∗∗∗
(4.134)

Note: The rows of Table 4.3 represent the results of regressing the particular variable listed
in that row (load, solar generation, and wind generation across all three indices) against
a constant and a time trend. Hence, the outcome of nine ordinary least squares (OLS)
regressions in total is displayed. Figures in parentheses are t-statistic corresponding to the
estimated coefficients. ‘∗∗∗’ denote two-side statistical significance at the 1% level, and ‘∗∗’
at the 5% level.
Source: Author’s computations.

4.5 Test statistics
Ultimately, the selected test statistics is presented in Table 4.4. Firstly, the test
of Jarque and Bera (1987) formally proves previous findings of the distributions
of our time series as it rejects the null hypothesis of skewness and kurtosis be-
ing equal to that of normal distribution in every instance. Furthermore, to be
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able to perform modelling procedures explained in the following chapter, tests
differentiating between unit-root and no-unit processes in the series must be
undertaken. If the latter attribute holds, the results may suffer from the prob-
lem of spurious regression, signifying that a relationship between two variables
is established despite its non-existence, and the impact of past shocks is per-
manent (Enders, 2014). We thus perform the augmented Dickey-Fuller (ADF)
test (Dickey and Fuller, 1979) where the null hypothesis of a unit root is tested
against no unit root. Based on Table 4.4, we can reject the null hypothesis in
all cases, and thus no unit root process is present in the remaining series across
the three indices. In contrast, Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
(Kwiatkowski et al., 1992), where stationarity against non-stationarity is exam-
ined, demonstrates that we fail to reject the null hypothesis in every instance
at any conventional significance levels, leading us to conclude that the desired
property of stationarity is true for all our series. In other words, their levels
are integrated of order 0, I(0).

Table 4.4: Selected test statistics

Index Variables JB ADF KPSS

Daily

Prices 589.71∗∗∗ −5.919∗∗∗ 0.2955
Load 34.51∗∗∗ −3.9613∗∗ 0.2126
Solar 121.21∗∗∗ −3.0961 0.2095
Wind 390.48∗∗∗ −7.9894∗∗∗ 0.1558

Peak

Prices 1021.40∗∗∗ −4.881∗∗∗ 0.1878
Load 68.17∗∗∗ −3.520∗∗ 0.1496
Solar 81.80∗∗∗ −2.675 0.1766
Wind 264.87∗∗∗ −7.461∗∗∗ 0.1558

Off-Peak

Prices 224.74∗∗∗ −6.227∗∗∗ 0.3354
Load 83.67∗∗∗ −3.2295∗ 0.2223
Solar 1175.6∗∗∗ −5.4561∗∗∗ 0.1525
Wind 407.36∗∗∗ −7.997∗∗∗ 0.2305

Note: JB stands for the Jarque-Bera test, ADF for the augmented Dickey-Fuller test, and
KPSS for Kwiatkowski-Phillips-Schmidt-Shin test. For the latter two tests, R software en-
ables the automated lag selection. ‘∗∗∗’ denotes the two-side statistical significance at the
1% level, ‘∗∗’ at the at the 5% level, and ‘∗’ at the 10% level.
Source: Author’s computations.
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Methodology

This chapter presents our econometric approach to assessing the impact of
intermittent RES on price level and volatility. The methodology follows the
procedure taken by Ketterer (2012) and Kyritsis et al. (2017) but deviates from
the latter by the supplementary inclusion of EGARCH model as proposed by
Pereira da Silva and Horta (2019). In total, GARCH models originated in the
work of Bollerslev (1986) who proposed a generalization of the ARCH model
introduced by Engle (1982) in order to allow for a longer memory and a more
flexible structure of lags. As it was noted in Section 2.2, GARCH family models,
which formerly developed in finance, have gained an essential role in short-term
volatility modelling of energy prices as they are very efficient at incorporating
irregular periods of price volatility and tranquility, i.e. inherent features of
energy systems (Figueiredo and da Silva, 2019).

5.1 Model

5.1.1 Conditional mean equation

Let pt, t = 1, . . . , T , represent the electricity spot price. In line with Papaioan-
nou et al. (2018), pt is treated as a process with a certain degree of correlation
from time t−1 to time t. Making use of the correlation structure between these
two measurements, pt can be decomposed into the following two components:

pt = yt + f(t), (5.1)

where f(t) is a deterministic function defined in Equation 4.1 if pt belongs to
daily index, in Equation 4.2 if pt is an off-peak price, or in Equation 4.3 if pt
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is a peak price. The second part, yt, is a stochastic component that comprises
of the information set available at time t and other relevant variables xit (e.g.
load or power generations).

A starting point for the derivation of the conditional mean equation rep-
resents the mean-reverting pattern of electricity prices. In line with Ketterer
(2012), a model that is particular convenient for such a task is the Ornstein-
Uhlenbeck process (Uhlenbeck and Ornstein, 1930). As can be seen from the
following specification, it is a continuous time model that permits autocorrela-
tion (Knittel and Roberts, 2005):

dp(t) = κ[µ − p(t)]dt + σdb(t), p(0) = p0, (5.2)

where p(t) is the electricity price at time t, κ and µ and σ are real constants,
and b(t) is a standard Wiener process. The idea related to this formula is that
the fluctuations of the price around the equilibrium level or mean, [µ − p(t)],
are only of a transitory nature. From the perspective of power markets, these
fluctuations and the resulting price peaks are caused by capacity shortages or
power plant outages (Keles et al., 2012). The speed of the reversion is given by
κ, and the fact that the price deviations are affected by random perturbations
is denoted by σdb(t).

As Knittel and Roberts (2005) point out, Equation 5.2 represents a well-
known autoregressive process of order one, AR(1), in continuous time, which
can be inferred from its integration:

p(t) = e−κtp0 + µ(1 − e−tκ) + σ
∫︂ t

0
eκ(s−t)db(s). (5.3)

Due to estimation, however, the Ornstein-Uhlenbeck process will be regarded
in a discrete time form with a deseasonalized “version” of prices (see Bierbrauer
et al., 2007), in which case we have:

yt = a + ϕ1yt−1 + ηt, (5.4)

where yt = pt − f(t) from Equation 5.1, and ηt is an iid with 0 mean and
variance σ2

η = σ2 (1−e−2κ)
2 (Knittel and Roberts, 2005). The link between the

AR(1) parameters in this discretized form in Equation 5.4 and the original
parameters in Equation 5.3 is thus given by a = µ(1 − e−κ), ϕ1 = e−κ, ηt =
σ
∫︁ t

t−1 eκ(s−t)db(s). Hence, using the approach of Ketterer (2012), the conditional
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mean equation is specified as:

yt = µ +
p∑︂

i=1
ϕiyt−i + xitγ + ϵt, (5.5)

where additional exogenous explanatory variables are allowed in the condi-
tional mean equation through the vector of external regressors xit as we want
to explicitly detect the effect of wind and PV generations on the first (two) mo-
ment(s) of electricity prices. i = 1, 2, and 3 account for the total electricity load
lt, solar power generation st, and wind power generation wt, respectively. The
vector γ denotes the weights of each variable. Correspondingly, Equation 5.5
represents an AR-X process. In addition to that, yt consists of a random inno-
vation process ϵt for which the identities E[ϵt] = 0 and E[ϵt1ϵt2 ] = 0, t1 ̸= t2, are
assumed. That is, random disturbances have zero mean and are uncorrelated
across adjacent periods. Although disturbances are uncorrelated, it does not
imply their independence since successive values are related to each other as
follows:

ϵt =
√︂

htzt, (5.6)

where
√

ht denotes the conditional standard deviation and zt is a standard-
ized and independent, identically distributed (iid) random variable with zero
mean and unity variance. Note that Equation 5.6 means that ϵt rescales an
idd sequence zt with a conditional standard deviation

√
ht which incorporates

the serial dependence of innovations (Papaioannou et al., 2018). Therefore, a
standardized disturbance ϵt√

ht
is also an iid sequence.

5.1.2 Conditional variance equation

The conditional variance of innovations ϵt takes the following form:

ht = Vart−1[yt] = E[ϵ2
t ] − E[ϵt]2 = E[ϵ2

t ]. (5.7)

Proceeding according to Bollerslev (1986) and Papaioannou et al. (2018), ϵt

denotes a real-valued discrete-time stochastic process and Ψt the information
set or σ−field of all of the information up to time t − 1. The GARCH(m,n)
model for conditional variance ht is then given by

ϵt |Ψt−1 ∼ N(0, ht), (5.8)
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ht = ω +
m∑︂

i=1
αiϵ

2
t−i +

n∑︂
j=1

βjht−j + xitδ, (5.9)

where ω is long-run variance1, ϵ2
t−i the ARCH term and ht−j the GARCH

term. The vector xit represents the exogenous covariates presented under Equa-
tion 5.5, each of which is weighted by a parameter of the vector δ. Thus, Equa-
tion 5.9 is in fact a GARCH-X model. The parameters must meet the follow-
ing conditions in order to ensure stationarity and positive conditional variance:
ω > 0, αi ≥ 0 for i = 1, . . . , m, βj ≥ 0 for j = 1, . . . , n,

∑︁m
i αi +∑︁n

j βj < 1, and
δ ≥ 0 (Neusser, 2016). In general, GARCH models are useful for their ability
to accurately capture certain characteristics of volatility. For instance, time
series of electricity prices can exhibit volatility clustering, meaning that the
periods of high volatility tend to be followed by the periods of volatility of the
similar magnitude and vice versa (Tsay, 2010). This persistence is captured by
βj, j = 1, . . . , n, as its high value indicates a high dependence of future volatil-
ity on past volatility, and similarly, its low value implies a lower carry-over
effect of past to future volatility (Papaioannou et al., 2018). The impact of
new shocks is reflected by αi, i = 1, . . . , m.

Despite the fact that any order of the GARCH model is realizable, the
stylized facts of prices are satisfied sufficiently within the GARCH(1,1) frame-
work (Shen and Ritter, 2016). Conditioning on Equation 5.8 and determining
m = n = 1, Equation 5.9 becomes

ht = ω + α1ϵ
2
t−1 + β1ht−1 + xitδ, (5.10)

where ω > 0, α1 ≥ 0, β1 ≥ 0, and α1 + β1 < 1. The latter condition indicates
that the unconditional variance of ϵt is finite, while its conditional variance ht

develops over time (Tsay, 2010). To put the matter another way, α1+β1 denotes
the time that the volatility needs to shift halfway back to its unconditional mean
value, and thus if it is less than one, the mean reverting conditional volatility
mechanism occurs (Papaioannou et al., 2018).

Furthermore, although the GARCH(1,1) process is convenient in that its
tail distribution is leptokurtic, it is not able to capture the (asymmetric) lever-
age effect when volatility tends to react differently to positive and negative
price shocks (Tsay, 2010). Inspecting the asymmetric impact of innovations
is allowed by the exponential GARCH (EGARCH) model of Nelson (1991).

1 More precisely, ω represents the value towards which the variance will converge in the
long-run (Ketterer, 2012).
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To ensure that the conditional variance of ϵt given information Ψt at time t

remains nonnegative, the EGARCH(m,n) variance equation is suggested:

ln(ht) = ω +
m∑︂

i=1
αi

{︄
|ϵt−i|√

ht−i

− E
[︄

|ϵt−i|√
ht−i

]︄}︄
+

m∑︂
i=1

λi
ϵt−i√
ht−i

+
n∑︂

j=1
βj ln(ht−j)+xitδ,

(5.11)
where E|zt−i| = E

[︃
|ϵt−i|√

ht−i

]︃
=
√︂

2
π

for the standard Gaussian random variable

zt−i, i = 1, . . . , m, E|zt−i| = E
[︃

|ϵt−i|√
ht−i

]︃
= 2

ν−1

√︂
ν−2

π

Γ( ν+1
2 )

Γ( ν
2 ) for the standardized

Student-t distribution with degrees of freedom ν > 2, and λi, i = 1, . . . , m,

denotes the leverage term (Tsay, 2010, and Papaioannou et al., 2018).
It follows that the constraints imposed on coefficients of classical GARCH-

type models exclude any random oscillatory behaviour in the ht process since
Equation 5.9 and Equation 5.10 imply that increasing ϵ2

t in any period increases
ht+l for all l ≥ 1. This means that only the size, not the sign, of lagged residuals
explains the conditional variance ht. However, both the magnitude and the
cycling pattern of ϵt’s are permitted under the EGARCH model since the βj

terms can be either positive or negative (Nelson, 1991). Finally, the usage of
the level of the standardized value of ϵt, i.e. zt, instead of its squared value is
beneficial as standardization provides a more natural interpretation of the size
and persistence of shocks (Nelson, 1991).

Setting m = n = 1, we obtain the EGARCH(1,1) model of the conditional
variance ht:

ln(ht) = ω + α1

⎡⎣ |ϵt−1|√
ht−1

−
√︄

2
π

⎤⎦+ λ1
ϵt−1√
ht−1

+ β1 ln(ht−1) + xitδ, (5.12)

where β1 stands for the persistence in conditional volatility regardless of the
events taking place on the market. Hence, if it is relatively large, then volatil-
ity dies out more slowly as a result of the shock that has developed there.
α1

[︃
|ϵt−1|√

ht−1
−
√︂

2
π

]︃
accounts for the magnitude or symmetry effect in the context

of the GARCH model. α1 thus reflects to what extent the change in variable
zt deviates from its long-run average (Erdogdu, 2016). Moreover, λ1

ϵt−1√
ht−1

in-
dicates the sign effect. That is, λ1 represents the asymmetry parameter since
a positive shock raises variance less than a negative shock if −1 < λ1 < 0, and
if 0 < λ1 < 1, unanticipated price increases are more disrupting than price
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decreases. Provided that there is a leverage effect (the former case), λ1 must
be both statistically significant and negative. On the other hand, statistically
significant and positive λ1 marks the existence of the inverse leverage effect
(the latter case). Should λ1 = 0, no asymmetric effect of past shocks on cur-
rent variance exists; the model is symmetric. All of these features justify the
substitution of the EGARCH model for the GARCH model in Pereira da Silva
and Horta (2019).2 In our case, the extensions of the classical GARCH will be
analyzed mainly due to the robustness check.

Another volatility model, proposed by Zakoian (1994), that can be used to
manage the leverage effect is the threshold GARCH (TGARCH) model which
makes use of the indicator variable that detects the impact of positive shocks
or good news (i.e. ϵt−i ≥ 0) and the negative shocks or bad news (i.e. ϵt−i < 0)
evolving in the market.3 Since Glosten et al. (1993) introduced virtually the
same process, the GJR nomenclature for this type of model is also used.

5.2 Model estimation
The maximum likelihood estimation (MLE) for the GARCH(m,n) regression
model in Equation 5.9 is described as follows.4 Continue to perceive that ϵt is
the error term in the linear equation of the form ϵt = yt −µ−∑︁p

i=1 ϕiyt−i −xitδ

and that it is also given by ϵt =
√

htzt with zt
iid∼ N(0, 1); see Equation 5.6.

Therefore, the distribution of ϵt conditional on the information set available at
time t − 1, i.e. Ψt−1, is normal with conditional variance ht from Equation 5.9.
The conditional density function of ϵt is then:

f(ϵt |Ψt−1) = 1√
2πht

exp
(︄

−ϵ2
t

2ht

)︄
. (5.13)

2 The authors also argue that EGARCH permits price and variance to exhibit a correlation
different from zero.

3 In this case, the threshold is 0 as it separates the effects of past shocks.
4 For illustrative purposes, we present the MLE only in the GARCH case. Although the

same procedure yields the log-likelihood function for the EGARCH model in Equation 5.11,
the result is distinct as a consequence of the different form of the conditional variance ht.
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According to Tsay (2010), the corresponding likelihood function of the GARCH(m,
n) model is:

f(ϵ1, . . . , ϵT |θ) = f(ϵT |ΨT −1)f(ϵT −1 |ΨT −2) . . . f(ym+1 |Ψm)f(ϵ1, ϵ2, . . . , ϵm |θ)

=
[︄

T∏︂
t=m+1

f(ϵt |Ψt−1)
]︄

f(ϵ1, . . . , ϵm |θ)

=
[︄

T∏︂
t=m+1

1√
2πht

exp
(︄

−ϵ2
t

2ht

)︄]︄
f(ϵ1, . . . , ϵm |θ),

(5.14)

where θ consists of the parameters in the conditional mean and conditional
variance equations, i.e. ϕ = (µ, ϕ1, . . . , ϕp)′, α = (α0, α1, . . . , αm)′, β =
(β1, . . . , βn)′ plus the parameters on additional explanatory variables γ and
δ. The joint probability density function of ϵ1, . . . , ϵm, f(ϵ1, . . . , ϵm | θ), de-
serves a special remark. Since its exact form is complex, it is usually omitted
when defining the likelihood function (Tsay, 2010). The resulting form of Equa-
tion 5.14 is thus the conditional likelihood function defined as:

f(ϵm+1, . . . , ϵT |θ, ϵ1, . . . , ϵm) =
T∏︂

t=m+1
f(ϵt |Ψt−1) =

T∏︂
t=m+1

1√
2πht

exp
(︄

−ϵ2
t

2ht

)︄
,

(5.15)
where the random variables in Ψt−1 are replaced by their realizations (Neusser,
2016). The value of θ that maximizes Equation 5.15 is the conditional maximum-
likelihood estimate (MLE) of θ under normality. Moreover, due to a far easier
computation with a sum than with a product, it is more practical to take
the natural log of each side of the above equation. It leads to the following
log-likelihood function:

ℓ(ϵm+1, . . . , ϵT |θ, ϵ1, . . . , ϵm) = −T

2 ln(2π)− 1
2

T∑︂
t=m+1

ln(ht)− 1
2

T∑︂
t=m+1

ϵ2
t

ht

, (5.16)

Since the first term does not comprise of any parameters, it is treated as a
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fixed constant and can be omitted from optimization (Tsay, 2010). The log-
likelihood function thus becomes

ℓ(ϵm+1, . . . , ϵT |θ, ϵ1, . . . , ϵm) = −1
2

T∑︂
t=m+1

ln(ht) − 1
2

T∑︂
t=m+1

ϵ2
t

ht

, (5.17)

At this point, recall that ϵt = yt − µ − ∑︁p
i=1 ϕiyt−i − xitγ and suppose that

the conditional variance ht follows the GARCH(m,n) process defined in Equa-
tion 5.9. By substituting these values for ϵt and ht, we can perform the
maximization of the log-likelihood function with respect to individual param-
eters in θ. However, since this optimization yields nonlinear first-order equa-
tions, no analytic solutions for a maximum are provided and the whole process
has to be done numerically (Weber, 2005). Nonetheless, it is important to
stress out that exact solutions for the estimated coefficients cannot be guar-
anteed by the numerical optimization (Enders, 2014). Instead, the so-called
“hill-climbing” methods for finding the parameter values which maximize log-
likelihood functions are employed. In this respect, the conventional Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm for numerical maximization can
be applied.

Finally, due to the characteristics of some applications, one may also assume
that ϵt follows a heavy-tailed or skewed distribution (for example, Student-t or
skewed Student-t distribution, respectively) or a generalized error distribution
(GED). We would then obtain the quasi-maximum likelihood estimator.

5.3 Model selection criteria
For their ability to trade-off a reduction in the sum of squares of the estimated
residuals (induced by the increasing number of explanatory variables) for more
parsimonious models (Enders, 2014), various model selection criteria will be
used in the subsequent chapter. One of the most common ones are the Akaike
(1974) Information Criterion (AIC), Schwarz (1978) or Bayesian Information
Criterion (SIC), and Hannan and Quinn (1979) Information Criterion (HQC).
The corresponding definitions have the ensuing form (Medel, 2013):
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AIC = −2 ℓ

T
+ 2n

1
T

, (5.18)

SIC = −2 ℓ

T
+ n

log (T )
T

, (5.19)

HQC = −2 ℓ

T
+ 2n

log (T )
T

, (5.20)

where ℓ is the value of the log-likelihood function from Equation 5.17 and n

is the number of parameters estimated using T observations. The first factors
in the above-presented formulas measure the goodness of fit of the model to
the data, while the second components are known as penalty or cost functions
of the criteria as they penalize the candidate model based on the number of
parameters employed (Tsay, 2010). It follows that since SIC imposes a larger
cost on each parameter estimated than AIC, simpler models are selected by SIC
rather than by AIC when the sample is of middle or large size (Tsay, 2010).
More specifically, as T → ∞, the term log(T ) in Equation 5.19 guarantees that
the penalty of incorporating an additional regressor turns out to be large, ruling
out the possibility of selecting an overfitted model (Maïnassara and Kokonendji,
2016). For large samples, Hannan and Quinn (1979) proposed their version
of information criteria to mitigate the penalty of SIC. Ultimately, the most
appropriate model is the one that has the lowest information criteria. In fact,
information criteria approach −∞ each time the fit of the model improves
(Enders, 2014).



Chapter 6

Empirical analysis and discussion of
findings

In this chapter, the empirical analysis itself is carried out. The first section
presents the specification of a mean equation and the resulting residuals are
subsequently subject to tests for ARCH effects. Section 6.2 provides the results
obtained through the modelling technique described in the previous chapter,
consisting of a simultaneous estimation of the conditional mean and volatility
equations, and executed in R statistical software. The discussion of findings
concerning the existing literature on RES position on electricity markets, par-
ticularly the Czech one, is also incorporated into the section. The final part of
this chapter presents the approach that would add another layer to our work.

6.1 Preliminary analysis
For all indices, two versions of the mean equation are estimated in order to de-
termine the most appropriate specification that will be extended in Section 6.2
with additional terms. An analogous procedure was applied by Mugele et al.
(2005) in their assessment of the electricity price behaviour in German, Nordic
and Polish power markets, and by Benhmad and Percebois (2016) who evalu-
ate the effect of wind power on EEX day-ahead prices. Firstly, based on the
comments made in the context of Ornstein-Uhlenbeck process in Equation 5.3,
we will model the equation with one autoregressive term, i.e. the price from
the previous period, and external regressors (model A) in the form of electricity
load lt, solar power generation st, and wind power generation wt. An AR(1)
structure also stems from the expectation of volatility persistence with regards
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to events on the previous day (Pereira da Silva and Horta, 2019). In the sec-
ond modification (model B), a more dynamic version of the equation will be
established by the inclusion of seven lags to reflect the weekly cycles for prices
across day and off-peak indices, as is also the case in the analysis of e.g. Ket-
terer (2012) and Kyritsis et al. (2017). Concerning peak prices, five lags will
be incorporated into the model as Saturdays and Sundays are omitted from
this classification (see Equation 4.3 and Maciejowska, 2020). Three external
regressors from model A are retained.

Several patterns conforming to the theoretical underpinnings presented in
the preceding chapters can be detected from Table 6.1. Namely, coefficients on
st and wt signalize that the MOE is indeed present on the Czech day-ahead
electricity market. In this regard, it is worth noting that solar power generation
is, as expected, an insignificant driver of electricity prices when it comes to off-
peak index due to weak solar activity. Hence, the positivity of the coefficient on
off-peak st does not represent any unusual or peculiar outcome. Furthermore,
based on the information criteria (which are a case in point as the marginal
cost of including additional explanatory variables is truly greater with SIC; see
Section 5.3 and Enders, 2014), every model that is favoured across all three
indices is the one which incorporates the lags of electricity prices up to order 7
(and 5), which is in accord with the line of reasoning presented in the previous
paragraph where model B was introduced. Not employing AR(1) specification
is similar to the procedure taken by Knittel and Roberts (2005) who eventually
employ 1, 24, and 25 period lags, accounting for the high correlation between
the current price and prices of the preceding day. Incidentally, one can even
determine the speed of reversion to the equilibrium level from Table 6.1. This
follows from the fact that the coefficient on the autoregressive parameter in
model A is equal to (Bierbrauer et al., 2007):

ϕ = 1 − κ, (6.1)

where ϕ and κ have the same definition as in the context of Equation 5.4.
At this stage, we want to additionally demonstrate that our final specifica-

tion of the mean equation is adequate in that the entertained AR model has
been successful in removing linear dependence in the price series. This can
be accomplished by saving the residuals of model B for daily index (the same
procedure applies to the remaining two types of indices) and plotting their au-
tocorrelation function (ACF). ACFs of the residuals from these three models
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Table 6.1: Results of the AR models

Daily Index Peak Index Off-Peak Index
A B A B A B

Mean Equation
µ 41.839∗∗∗

(1.842)
41.118∗∗∗

(2.056)
13.866∗∗

(5.617)
8.701
(6.018)

24.165∗∗∗
(2.851)

20.637∗∗∗
(3.361)

pt−1 0.733∗∗∗
(0.016)

0.534∗∗∗
(0.024)

0.688∗∗∗
(0.021)

0.506∗∗∗
(0.028)

0.712∗∗∗
(0.017)

0.519∗∗∗
(0.024)

pt−2 0.052∗
(0.027)

0.119∗∗∗
(0.032)

0.019
(0.027)

pt−3 0.080∗∗∗
(0.027)

0.080∗∗
(0.032)

0.091∗∗∗
(0.026)

pt−4 0.022
(0.027)

−0.024
(0.032)

0.016
(0.026)

pt−5 0.140∗∗∗
(0.028)

0.087∗∗∗
(0.032)

0.067∗∗
(0.026)

pt−6 0.005
(0.027)

0.028
(0.027)

pt−7 0.090∗∗∗
(0.024)

0.131∗∗∗
(0.024)

lt 0.0003∗∗
(0.0002)

0.0005∗∗
(0.0002)

0.005∗∗∗
(0.0006)

0.005∗∗∗
(0.0007)

0.002∗∗∗
(0.0004)

0.003∗∗∗
(0.0005)

st −0.013∗∗∗
(0.002)

−0.011∗∗∗
(0.002)

−0.009∗∗∗
(0.001)

−0.009∗∗∗
(0.001)

−0.0002
(0.001)

0.0006
(0.001)

wt −0.063∗∗∗
(0.004)

−0.073∗∗∗
(0.004)

−0.056∗∗∗
(0.005)

−0.061∗∗∗
(0.005)

−0.069∗∗∗
(0.003)

−0.076∗∗∗
(0.003)

Various Information Criteria
AIC 11545 11395 8537 8446 11108 10936
SIC 11578 11461 8568 8497 11141 11002
HQC 11557 11420 8549 8465 11121 10960

Note: The table reports the results of the regression where the dependent variable is the Czech
electricity spot price, adjusted for outliers, trend and calendar effects. The mean equation
is modelled by means of AR(1)-X, AR(7)-X (this only for daily and off-peak indices), and
AR(5)-X processes (this only for peak index) whose outcomes are displayed in columns A and
B, respectively. The processes incorporate exogenous variables as additional regressors, i.e.
electricity load lt, solar power generation st, and wind power generation wt. The values in
parentheses are standard errors corresponding to the estimated coefficients. AIC stands for
Akaike Information Criterion, SIC for Schwarz Information Criterion, and HQC for Hannan-
Quinn Information Criterion. Two-side statistical significance at the 1% level is denoted by
‘∗∗∗’, at the 5% level by ‘∗∗’, and at the 10% level by ‘∗’. The analysed sample spans from
01.01.2015 to 31.12.2019.
Source: Author’s computations.
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are displayed in Figure A.1 in the Appendix which indicates that no significant
serial correlations apart from minor ones at lag 7 in case of daily and off-peak
indices and lag 5 when peak index is considered. Although some higher lags
appear in the plots of ACFs, greater importance is attributed to lower lags
(Tsay, 2010), and thus we suggest that the residuals are no longer serially cor-
related. Quantification of this conclusion is practicable thanks to Ljung and
Box (1978) test, where it holds that the Q(I) statistic follows asymptotically
a χ2 distribution with I time lags under the null hypothesis of no serial cor-
relation. The results of this test are presented in Table A.1 in the Appendix,
which implies that the residuals are independently distributed across the in-
dividual models B of the three indices. Owing to the peak residuals, since
the mentioned null hypothesis can be rejected only under the 10% significance
level and since the corresponding ACF in Figure A.1 does show extreme lags
on no account, we consider the proposed mean specifications for all the indices
appropriate. Final remarks evolve around the squared residuals (saved after
regressing the models B) whose ACFs are also presented in Figure A.1. They
uncover that the squared residuals, particularly residuals from the peak index
mean equation specification, are squared dependent as large spikes are looming
in the plots. To validate such a statement, Engle’s (1982) Lagrange multiplier
(LM) test for detecting ARCH disturbances is carried out in Table A.1. As the
hypothesis of no ARCH effects in the residuals is rejected in every instance, the
presence of conditional heteroskedasticity (i.e. variance which is not constant
and which is conditioned on the past information) in our time series is formally
acknowledged. This leads to the application of the GARCH-class models in the
subsequent section.

6.2 Presentation and discussion of results
As it was delineated in the previous section, all models B are reestimated as
additional terms enter the regressions due to the significant ACFs of squared
residuals. Three variants of the new models, from which the optimal one is
also selected based on the information criteria, are proposed. Column C in
Table 6.2 for daily index, as well as in the Appendix in Table A.2 for peak
index and Table A.3 for off-peak index,1 exposes the results of the specification
where model B is supplemented with the standard GARCH(1,1) component.

1 For the space-saving purpose, the results of the regressions for peak and off-peak indices
were placed in the Appendix.



6. Empirical analysis and discussion of findings 47

Columns D in the same tables contain the results of the models C that are ex-
panded with external regressors. Specifically, forecasted total load representing
the predicted demand profile lt, foreseen solar power generation st, and wind
power generation (assumed forecasted) wt are supplementary explanatory vari-
ables in the variance equations of models D. Models E in the above mentioned
tables extend models C by employing the EGARCH term with the same inde-
pendent variables as in columns D. This will ultimately be helpful in verifying
the variance stability as EGARCH is invariable under the presence of negative
coefficients in a variance equation (see Subsection 5.1.2 and Ketterer, 2012).

Before we proceed with the presentation of outcomes, some notes regarding
the ensuing analysis are required. Specifically, the following text describes the
empirical estimates of our models for the three indices all at once as we want
to preserve the comparative approach of the work. Moreover, the references
to the corresponding tables containing the outcomes of our modelling method
are dropped in this section in order to maintain the continuity of reading.
Therefore, whenever we report the results of daily, peak, and off-peak models,
please always consult Table 6.2, Table A.2, and Table A.3, respectively.

6.2.1 Conditional mean equation

In relation to the conditional mean equations, most of the coefficients of the
autoregressive component of every single model estimated, especially AR(1)
and AR(7) for all and off-peak hours and AR(1) and AR(5) for peak hours, are
statistically significant under the 1% significance level. This is attributed to the
regularity when current prices are contingent upon the prices on the previous
day and upon those of the same day the preceding week (Pham and Lemoine,
2015). Interestingly, the coefficients on the load variable for the daily index
models are negative, which goes against the anticipated nature of demand in
that its increasing value has an augmenting impact on electricity prices. How-
ever, these coefficients are not significant under any conventional significance
levels, signifying that the results do not clash with either intuition or literature.
Such a statement is underlined by the outcomes of the estimated peak and off-
peak mean equations where electricity prices truly rise with higher electricity
demand. It is also interesting to point out that the impact is more pronounced
during the peak interval (as opposed to the first 8 and last 8 hours of a day).
This periodicity is attributable to the fact that the electricity system is tight



6. Empirical analysis and discussion of findings 48

Table 6.2: Results of the GARCH models for daily index

Daily Index
C D E

Conditional Mean Equation
µ 44.057∗∗∗

(23.620)
44.031∗∗∗

(23.299)
44.570∗∗∗

(24.351)
pt−1 0.554∗∗∗

(20.307)
0.553∗∗∗

(20.201)
0.560∗∗∗

(26.778)
pt−2 0.022

(0.729)
0.018
(0.593)

0.001
(0.123)

pt−3 0.125∗∗∗
(4.392)

0.127∗∗∗
(4.689)

0.127∗∗∗
(7.981)

pt−4 0.011
(0.397)

0.004
(0.164)

0.005
(0.977)

pt−5 0.099∗∗∗
(3.731)

0.114∗∗∗
(4.565)

0.113∗∗∗
(6.951)

pt−6 −0.008
(−0.299)

0.001
(0.028)

−0.002
(−0.326)

pt−7 0.074∗∗∗
(3.300)

0.065∗∗∗
(3.068)

0.064∗∗∗
(3.779)

lt −0.0001
(−0.232)

−0.0001
(−0.265)

−0.0001
(−0.259)

st −0.011∗∗∗
(−7.434)

−0.011∗∗∗
(−7.565)

−0.010∗∗∗
(−7.504)

wt −0.066∗∗∗
(−19.678)

−0.066∗∗∗
(−19.318)

−0.066∗∗∗
(−20.673)

Conditional Variance Equation
ω 2.263∗∗∗

(5.777)
37.005∗∗∗

(5.789)
2.262∗∗∗

(5.785)
ϵ2

t−1 0.204∗∗∗
(5.380)

0.235∗∗∗
(7.024)

0.061∗∗
(2.124)

ht−1 0.524∗∗∗
(9.205)

0.379∗∗∗
(5.533)

0.600∗∗∗
(8.658)

ϵt−1
ht−1

0.399∗∗∗
(9.203)

lt −0.003∗∗∗
(−3.286)

−0.0001∗∗
(−2.390)

st −0.020∗∗∗
(−2.763)

−0.001∗∗
(−2.176)

wt 0.065∗∗
(2.184)

0.002∗∗
(1.978)

Various Information Criteria
AIC 6.147 6.126 6.137
SIC 6.190 6.177 6.191
HQC 6.163 6.145 6.157

Note: The table reports the results of the regression where the dependent variable is the
Czech electricity spot price, adjusted for outliers, trend, and calendar effects. The conditional
mean and variance equations are modelled by means of AR(7)-X-GARCH(1,1), AR(7)-X-
GARCH(1,1)-X, and AR(7)-X-EGARCH(1,1)-X processes whose outcomes are displayed in
columns C, D, and E, respectively. The processes include exogenous variables as additional
regressors, i.e. electricity load lt, solar power generation st, and wind power generation wt.
The values in parentheses are t-statistics corresponding to the estimated coefficients. AIC
marks Akaike Information Criterion, SIC Schwarz Information Criterion, and HQC Hannan-
Quinn Information Criterion. Two-side statistical significance at the 1% level is denoted by
‘∗∗∗’, at the 5% level by ‘∗∗’, and at the 10% level by ‘∗’. The analysed sample spans from
01.01.2015 to 31.12.2019.
Source: Author’s computations.
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during these hours (Kyritsis et al., 2017) and does, in fact, provide empirical
evidence for remarks mentioned in relation to hypothesis 2 in Chapter 3.

Furthermore, both coefficients associated with solar and wind power gener-
ations are negative and statistically significant at the 1% significance level in
every model for daily and peak indices, proving that the MOE indeed plays
a non-negligible role in the formation of Czech day-ahead electricity prices.
Based on the most adequate models (see the corresponding information crite-
ria) which turned out to be the one presented in column D in case of daily
index and column C in case of peak index, we can also provide some numeric
terms for the subject matter. More concretely, 10 additional MW of power that
are produced by solar and wind per day decreases, on average, electricity price
by 0.11 and 0.66 EUR/MWh, respectively. Regarding peak index, 10 addi-
tional MW of power generated by solar and wind reduce the average electricity
price by 0.09 and 0.53 EUR/MWh, respectively. That wind power generation
elicits some effect is in contrast with insignificant coefficients on wind in the
study of Kouřílek (2019), who investigates to what extent German RES affects
Czech day-ahead electricity prices. Nevertheless, our findings concerning the
Czech solar MOE are in agreement with the aforesaid work and also with that
of Tůma (2015) who assesses the prospects of solar power production in the
CZ. This may possibly accentuate the idea of Kouřílek (2019) that the results
of Luňáčková et al. (2017) presented in Section 2.3 might have been affected
by the choice of the sampling period. Otherwise stated, since the data were
collected partially from the times when the CZ was experiencing a prominent
accrual in the number of solar installations, their analysis might have detected
patterns that can no longer be found on the current Czech electricity market.
Having said that, Luňáčková et al. (2017) do inform about the price-dampening
effect of RES except solar, mainly that of hydro and wind.

Additionally, the results for off-peak index show that solar power is irrele-
vant for explaining the price-setting procedure during the night, early morning,
and evening times. The finding is in harmony with Table 6.1 from the previ-
ous section and is, after all, instinctive since the hours of sunshine are rather
limited during the analyzed block of a day. This is naturally not the issue with
off-peak wind power production as its effect is greater here than in case of peak
index. Noticing that SIC and HQC report the smallest value for the off-peak
model in column D, we determine that the respective MOE accounts for 0.68
EUR/MWh (with 10 additional MW produced by wind). It is worth noting
that this inference corresponds to the line of reasoning anteceding hypothesis
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3 in Chapter 3. Therefore, provided that wind output rises during the off-peak
hours, then prices will lessen more than during the peak hours for a compar-
ative price accrual in wind power production. According to Rintamäki et al.
(2017), such an observation is connected to the greater sensitivity of the supply
curves for the off-peak hours when compared to the supply curves for the peak
hours.

6.2.2 Conditional variance equation

Proceeding with the variance equations, let us first discuss the coefficients on
the ARCH term ϵ2

t−1 accounting for the impact of new shocks and the coeffi-
cients on the GARCH term ht−1 that mirror the lasting effect of past shocks.
It is important to notify that models C and D across all indices comply with
the constraints associated with GARCH models stated under Equation 5.10.
This corroborates that our volatility processes are covariance stationary. The
same conclusion holds for the EGARCH models in columns E since β1’s, i.e.
the coefficients on past shocks (see for example Equation 5.12) are less than
1 in every case (concerning the stationarity condition for EGARCH, consult
the work of Zivot, 2009). In this respect, the coefficients associated with the
asymmetry element ϵt−1√

ht−1
are positive in columns E for every index, implying

that the positive shocks to electricity prices increase the conditional variance
more than negative shocks (Knittel and Roberts, 2005). Moreover, guided by
Ketterer (2012) who employed EGARCH to investigate the variance stabil-
ity of standard GARCH models under the presence of negative coefficients in
their variance equations, we ultimately can assert that our models are adequate
candidates for capturing the time-varying volatility.

The magnitudes of α1’s, i.e. the coefficients explaining the influence of newly
emerged shocks, are always found to be rather low. They are approximately
0.22 in case of models C and D across all the indices, while those of β1’s are
only moderately high; for example, 0.524 for daily index model in column C.
Incidentally, since the point estimate of persistence α + β is less than one in all
our model specifications, it is possible to calculate the time during which the
volatility reaches the point that is exactly half-way from its mean value. The
following formula from Hadsell (2007) enables such a computation:

ln(1
2)

ln(α + β) . (6.2)
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On that account, the model C for daily index suggests that the half-life of
shocks is 2.18 days. For comparison, the same parameter is reported to be 1.33
and 17 days on Greek and Spanish (Iberian) electricity markets, respectively
(Papaioannou et al., 2018). Furthermore, it is also worth mentioning that the
persistence estimate reaches the highest value in case of peak index (approxi-
mately 0.899 for model D), indicating that the innovations arising during peak
hours do not fade out sufficiently quickly. Otherwise speaking, there is a high
degree of volatility persistence in the process of peak electricity prices (Wang
and Wu, 2012).

What is particularly notable is that once additional explanatory variables
are incorporated into the variance equations of models C for daily and off-peak
indices (i.e. once our selected models D are taken into account), the coefficients
on the ARCH terms raises to some extent, while the GARCH coefficients ex-
perience a mild downward adaptation. The same findings are reported by
Ketterer (2012) who attributes the alteration to the bias stemming from the
underspecification issue. In our assessment, it seems to be the case of daily
and off-peak models C. Curiously, the model C for peak index does not appear
to exhibit bias arising from the exclusion of relevant variables, implying that
its coefficients are not misrepresented or skewed, since the fit is not elevated
if external regressors are included in its variance equation. Indeed, as it was
mentioned earlier, the model in column C is the optimal one for treating con-
ditional heteroskedasticity in peak prices as determined by SIC and HQC. A
rather surprising dynamics thus operates during the hours from 8:00 to 20:00 on
working days since demand does not play a significant role in the behaviour of
electricity price variance throughout this block of a day. Nonetheless, Kouřílek
(2019) draws the same conclusions with regard to the function of load in the
conditional variance equation. Besides that, some extraordinary conditions are
also true for peak wind and solar power generations since neither of these RES
stands for the drivers behind the volatility of peak electricity prices. It is infor-
matory to say that the results were re-examined in column E, which yields the
similar outcome. The reasons behind the irrelevance of intermittent sources of
energy may be due to the low level of installed wind capacity in the CZ (see
Table 2.1) and to the surmise adapted from Kyritsis et al. (2017). Namely,
the Czech mid-load power plants might be able to accommodate their produc-
tion to residual demand in an efficient manner since the operators have the
knowledge of low changeability associated with solar power production (refer
to Figure 4.1 or Figure 4.3). They thus can mitigate any effects of solar feed-in
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on electricity price volatility. To put it differently, since the largest amount of
energy is generated by solar plants during the same hours every day, flexible
plants do anticipate these times and treat their production accordingly.

The opposite findings are suggested by columns D for daily and off-peak
indices. It is important to point out that these results were also cross-checked
by means of the EGARCH estimation in columns E, which confirm that the
results do not suffer from any obvious misspecifications. Corresponding to
demand in conditional variance equations, daily index load (whose coefficient
is significantly different from 0) decreases the volatility of electricity prices,
whereas that of off-peak index amplifies it (although here, the coefficient is
significant under 5% significance level). The former conclusions are somewhat
contrasting with what is instinctively anticipated since more extreme prices in
the form of jumps tend to occur during the times of higher demand when the
limits of capacities might be reached. This is remarked by Ketterer (2012) who
also reports the counterintuitive results of this sort for one of her model variants.
Along the same lines, all of the outcomes of univariate GARCH-M base, peak,
and off-peak models of Kyritsis et al. (2017), which are thoroughly described
in Section 2.2, indicate that total electricity load decreases the volatility of
electricity prices. In this case, that our findings are different for off-peak load
may be ascribed to the disparate market dynamics in Germany.

Another remarkable feature is linked to the solar power generation whose
coefficient is statistically significant under at least 5% significance level in case
of both daily and off-peak indices but whose sign is dissimilar across the two
blocks of a day. The results are robust to different versions of the models as can
be discerned from the columns E and columns D. More specifically, the integra-
tion of additional MW of solar power brings about a reduction in the variance
of daily prices. The coefficient is equal to −0.020. This finding represents the
empirical evidence for hypothesis 2, thereby the reasoning introduced for moti-
vating the formulation of this hypothesis is formally proven. Nonetheless, solar
feed-in during off-peak hours elevates electricity price variance. Taking into
account weak solar radiance over early morning and evening hours, the result
is rather interesting but not unusual. For instance, see Kyritsis et al. (2017)
whose off-peak solar power generation is also unimportant when it comes to the
effect of RES on the level of prices but is significant provided that the center
of the analysis is price volatility. It should be noted that the outcome of our
off-peak model C does not contradict that of Kouřílek (2019) as the author
omits solar variable from the assessment of off-peak prices altogether. What
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may, however, also play a role in this matter (and in the matter of values of
off-peak solar skewness and kurtosis in Section 4.3) is the fact that off-peak
index additionally encompasses the whole non-working days.

Last but not least, coefficients on wind outputs in the daily and off-peak
variance equations in columns D and columns E are positive and their signif-
icance operates under the 5% and 10% significance levels, respectively. This
is relatively astonishing given the smaller number of wind farms in the CZ as
can be inferred from Table 2.1. Yet, what is not startling is the nonnegativity
of the related coefficients. The corresponding values are 0.065 and 0.116 for
daily and off-peak indices, respectively, suggesting that the wind intermittency
transmits into the price development in the form of abundant price spikes. This
underlines the relevance of discussion around hypothesis 3 in Chapter 3 and at
the same time emphasizes the importance of future hedging against price risk
in the Czech spot market as the integration of RES will be rising in connection
to the EU target outlined in Chapter 1.

Before closing this subsection, we remark that models in columns D and E
for daily index were reestimated with new external regressors in the form of
solar and wind power penetration ratios, i.e. the respective renewable source
divided by load. These new variables were defined based on Jónsson et al.
(2010), who investigate the impact of day-ahead wind power forecasts on elec-
tricity spot prices in Denmark. They argue that once we include the forecasts
of wind power as the proportional contribution to meeting the total electricity
demand in place of the absolute contribution in the regressions, more accurate
results will be obtained. The idea behind this is outlined in Section 4.1, where
we assert that load puts RES in perspective in that the same quantity of en-
ergy produced has a distinct impact on prices during the times of high and
low electricity demand. More concretely, demand reaches the highest values
during the peak hours, meaning that a large volume of wind energy generated
during this interval of a day will constitute a smaller share of total demand
than the same quantity would do during nighttime (Jónsson et al., 2010). On
that account, only daily index models were subject to further analysis since
peak and off-peak indices implicitly assume high and low levels of electricity
demand, respectively. In line with the literature (for example, Pereira da Silva
and Horta, 2019), the coefficients are now higher. This is understandable since
solar and wind power generation must increase considerably if the shares are to
be augmented by 1%. In the spirit of Ketterer (2012), this is connected to the
ensuing argumentation. The average values of load, solar, and wind accounts
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for 7434, 254.560, and 63.992 MW per day (see Table 4.1), in the order given.
The mean solar and wind penetration ratios are thus 3.424% and 0.861%. In or-
der to reach 4.424% (1.861%), solar (wind) power generation needs to increase
its original mean value by 74.346 (74.323) MW or by 29.206% (116.144%). Fur-
thermore, the significance of new coefficients remains the same as in columns
D and E except for solar which is insignificant in the variance equation of the
EGARCH model. Information criteria, however, still prefer our initial speci-
fications. Consequently, we do not present the results of these models in the
current work but they are available upon request.

6.2.3 Standardized residual diagnostics

The standardized residuals, i.e. ẑt = ϵt√
ht

(for theoretical background, please
refer to the discussion concerning Equation 5.6 in the preceding chapter), and
standardized squared residuals, i.e. ẑ2

t = ϵ2
t

ht
, from the selected models are sub-

sequently examined through the lens of the Ljung-Box test. The lag length
employed in the testing procedure was chosen with regards to Efimova and
Serletis (2014) and Kyritsis et al. (2017) who analyze electricity price volatility
with the similar GARCH models. The results are reported in Table A.4 in
the Appendix and imply that the null hypothesis of no serial correlation can
be rejected under the 10% singificance level for daily and off-peak residuals
and under the 5% significance level for peak residuals, which corresponds to
the findings of the two studies mentioned above. In order to observe the au-
tocorrelations, we also plot the ACFs (see Figure A.2 in the Appendix) of the
standardized residuals of all the preferred models. On the basis of these plots,
we can, nevertheless, observe that only very little autocorrelation, if any in
case of daily index, is exhibited by the residuals of interest. Furthermore, no
patterns attributed to seasonality can be tracked down in Figure A.2. All of
this leads us to conclude that our conditional mean equations from models D
for daily and off-peak indices and from model C for peak index are correctly
specified.

Moreover, being cognizant of the fact that any successful GARCH model
is the one whose squared standardized residuals do not exhibit dependence on
each other (Papaioannou et al., 2018), we also perform McLeod and Li (1983)
test for squared residual autocorrelation, which is presented in Table A.4. In
relation to the corresponding Q2 test statistics, reported for 30 lags as well,
that are statistically nonsignificant at any conventional significant levels, we
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claim that the null hypothesis of independently distributed data is not re-
jected in any case of any index. That is to say, the squared residuals from our
models are not serially correlated up to order 30, signifying that the models
are able to capture volatility clustering in the original electricity price series
correctly (Papaioannou et al., 2018). In a similar vein, the ARCH-LM test
in Table A.4 confirms that no ARCH effects are present in the standardized
squared residuals. These results are cross-checked by way of plotting the ACFs
of standardized squared residuals (in Figure A.2) which do not imply that any
conditional heteroskedasticity is looming in the residuals either. Therefore,
conditional variance equations used in this work are adequate. Eventually, in
the spirit of Solibakke (2002), we can thus state that AR(7)-X-GARCH(1,1)-X
models concerning the daily and off-peak indices and AR(5)-X-GARCH(1,1)
model pertaining to the peak index do not suffer from misspecification. In
other terms, they are appropriate for describing the electricity price dynamics
as they have survived the utilized specification tests.

6.3 Special remarks
An interesting direction for future work lies in taking into consideration the
nature of the electric power transmission network in Central Europe. More
specifically, the interested researcher may evaluate the effect of market coupling
(for details refer to Section 2.2) on the sensitivity of the level and volatility of
prices to changes in the output of wind and solar generations. One potential
avenue for assessing this topic would be the inclusion of a binary variable that
would assume the value of 1 after September 11, 2012 (including), when Czech-
Slovak-Hungarian market coupling took place (HUPX, 2020), and 0 otherwise.
Analogously, the Czech conditions after November 19, 2014, the date the op-
eration of this formation was extended to the Romanian day-ahead market
(HUPX, 2020), could be investigated. The method employed by Pereira da
Silva and Horta (2019), however, cannot be reproduced for the case of Czech
and Slovak market coupling as it was carried out on September 1, 2009 (CEER,
2010), and not all of the necessary datasets are available for these times. Al-
ternatively, it is possible to employ a proxy variable for market coupling in the
form of the price differential between the respective countries, i.e. the spread
(Benhmad and Percebois, 2016).

Another method for detecting the effect of the integration of electricity mar-
kets is offered by Ketterer (2012). The author assesses whether the curtailment
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of price variance after 2010 in Germany was caused by the better interconnec-
tion between this country and the Northern region, and not by the regulatory
change (see Section 2.2). In order to resolve such a matter, she includes the
so-called available transfer capacity (ATC) as an explanatory variable into the
model. ATC is a feature of an interconnector, representing the maximum avail-
able amount of power that can be delivered in the interconnector’s direction
(NEMO Committee, 2018) and that is not yet allocated, making it useful for
exporting excess wind production (Ketterer, 2012). Since data for this variable
is limited for the Czech-German cross-border, our work neglects it. We at-
tempted to remedy this issue by calculating ATC with ENTSO-E data for the
bidding zone of Germany-Luxembourg-Austria. However, given the division of
the common bidding zone into the German-Luxembourgish and Austrian ones
on October 1, 2018 (ECC, 2018), a consistent dataset would not be acquired.
Furthermore, although the figures regarding the electricity trade flows are at
our disposal, they were not integrated into the analysis due to the problem of
endogeneity as these flows represent an outcome variable (Ketterer, 2012).



Chapter 7

Conclusion

This thesis investigates the impact of variable RES generation on day-ahead
electricity spot prices in the CZ between 2015 and 2019. One of the reasons
behind the assessment is the so-called “Winter Package”, the legislative act of
the European Commission known also as “Clean and Secure Energy for All
Europeans”, that marks out the objectives necessary for establishing a more
sustainable energy system in Europe (Ringel and Knodt, 2018). On the EU
level, RES should cover 32% of gross final consumption by 2030, while the
individual member states shall cover 10% to 49% of gross final consumption
with renewables (no national obligatory objectives for the member states were
defined) in order to ensure this target (Gilardoni, 2020). The state of affairs
on the Czech day-ahead electricity market is examined through the family of
univariate GARCH models that are convenient for such an analysis due to their
ability to successfully capture the dynamics of volatility (Wang and Wu, 2012)
and most importantly because they allow simultaneous estimation of mean and
variance equations.

Using the standard GARCH and EGARCH models, we capture the price-
dampening impact of solar and wind power generations on Czech day-ahead
electricity prices, meaning that our hypothesis 1 from Chapter 3, which follows
from the outcomes of the studies on the same theme in that low marginal cost
RES generation when dispatched into the electricity system decreases electricity
prices, is empirically proven. In other words, the MOE plays its part in the
price formation on the Czech day-ahead electricity market. Concerning the
volatility of the analyzed price series that is hypothesized to be lessened due
to solar feed-in and augmented as a result of wind feed-in, we can conclude
that the corresponding hypotheses 2 and 3 (also from Chapter 3) are formally
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acknowledged. The most striking feature in this respect is the statistically
significant (under the 5% significance level) Czech wind power generation in
our conditional variance equations, which has not yet been tracked, to the best
of our knowledge. Furthermore, as EGARCH models are incorporated into the
analysis, we can claim that once some unanticipated price increases emerge on
the Czech electricity market, they will have a more disrupting effect than when
some unexpected price decreases come up to the surface.

The novelty of our work is twofold. Firstly, no preceding works in the con-
text of Czech electricity prices employed univariate GARCH models (including
the exponential one) from the seminal studies of Ketterer (2012) and Kyrit-
sis et al. (2017). Of course, Tůma (2015) works with autoregressive moving
average GARCH (ARMA-GARCH) models; nevertheless, the usage of the sys-
tem imbalance as a dependent variable and the inclusion of time dummies into
the equations of the respective models accounts for different interpretations
and modelling procedure. Secondly, the present thesis seeks to discover how
the price behaviour varies when it comes to the different levels of demand, for
which the proxy variable load is utilized. On that account, following the ap-
proach of Maciejowska (2020), we created daily, peak, and off-peak indices of
the respective price series. It is important to point out that peak index encom-
passes observations from working days between 8:00 and 20:00, while off-peak
index covers observations from first 8 and last 8 hours (this is disparate on 1
day in March and 1 day in October due to daylight saving time) on working
days and all 24 hours on weekends and holidays. In this case, the findings
stemming from the assessment suggest that volatility of peak prices is not in-
fluenced by either solar or wind power generation, whilst that of off-peak prices
is heightened by both of the intermittent renewable sources.

The results of our study can be of use to practitioners and participants
on the Czech day-ahead electricity market as they elucidate how sensitive the
level and changeability of electricity prices are in relation to the composition
of RES power generation. More specifically, these pieces of information are
particularly desirable for generators who may employ them when bidding at a
power exchange or assessing the possible competition from other suppliers and
the prospective opportunities connected to servicing customers in various loca-
tions of the country (Higgs and Worthington, 2010). The knowledge of price
dynamics under the current RES regime is also an important input for policy-
makers who evaluate the functioning of existing systems with regards to policy
objectives and who determine the targets of their schemes out of consideration



for optimal generation mix, and thus for the potential reduction of uncertainty.
The findings are therefore also beneficial to large energy consumers who are
involved in hedging strategies and can specify electricity derivatives’ financial
worth based on the evaluation of volatility. Moreover, since the intermittency
of RES generation can propagate towards the intraday market (Ballester and
Furió, 2015), it would also be convenient to analyse the effect of sustainable
generation on markets besides the day-ahead one.

Apart from this suggested extension of the present work and the proposed
future exploration of the effects of market coupling on price development in
the CZ described in the previous chapter, it would be interesting to study
the distribution of Czech prices for different intervals of solar and wind power
penetration. To execute this issue, one can refer to Kyritsis et al. (2017). Fur-
thermore, the methodology used in this work can be expanded with jumps.
The channel for this investigation is offered by Escribano et al. (2011) who
also allow GARCH models to detect the impact of non-constant volatility on
price spikes as these two elements are more of the complements rather than
substitutes when it comes to modelling electricity prices. Other particularly
appealing models are proposed by Bollerslev and Ghysels (1996), whose peri-
odic GARCH (P-GARCH) models are able to capture the recurrent seasonal
shifts in the second-order moments, and by Rintamäki et al. (2017), who ap-
ply seasonally adjusted ARMA model (SARMA). Another remarkable research
area revolves around the inspection of the role of the geographic diversification
or the spatial aggregation in the process of reduction of the MOE on prices.
This would unravel how the value of a solar or wind resource correlates with
other existing RES resources (Forrest and MacGill, 2013) and how efficient it
is from the economic, rather than from the physical, point of view (Boccard,
2009).
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Appendix

Figure A.1: ACFs of the residuals from the AR models

Note: The figure presents (a) autocorrelation function (ACF) of the residuals of the AR(7)-X
model for daily index, (b) ACF of the residuals of the AR(5)-X model for peak index, (c)
ACF of the residuals of the AR(7)-X model for off-peak index, (d) ACF of the squared (sqr)
residuals of the AR(7)-X model for daily index, (e) ACF of the sqr residuals of the AR(5)-X
model for peak index, and (f) ACF of the sqr residuals of the AR(7)-X model for off-peak
index. The horizontal dashed lines represent two standard error limits of the ACF.
Source: Author’s computations.
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Table A.1: Diagnostics of the residuals from the AR models

Index Residuals Q(I) ARCH-LM

Daily Levels 7.937
Squares 58.327∗∗∗

Peak Levels 10.220∗

Squares 19.328∗∗∗

Off-Peak Levels 9.441
Squares 14.005∗∗

Note: Q(I) represents the Ljung-Box test statistic for the residuals of AR(7)-X (for daily and
off-peak indices) and AR(5)-X (for peak index) models. I in parentheses signifies the order
of autocorrelation we seek to examine (i.e. 7 in case of daily and off-peak indices, and 5 in
case of peak index). ARCH-LM denotes the Lagrange multiplier test, where the lag order
was chosen uniformly with that of the Ljung-Box test. Regarding the asterisks, ‘∗∗∗’ denotes
the two-side statistical significance at the 1% level, ‘∗∗’ at the 5% level, and ‘∗’ at the 10%
level.
Source: Author’s computations.



. Appendix III

Table A.2: Results of the GARCH models for peak index

Peak Index
C D E

Conditional Mean Equation
µ 6.982

(1.213)
8.238
(1.372)

13.069∗∗∗
(7.656)

pt−1 0.473∗∗∗
(14.671)

0.475∗∗∗
(14.617)

0.476∗∗∗
(16.360)

pt−2 0.125∗∗∗
(3.562)

0.124∗∗∗
(3.532)

0.128∗∗∗
(6.809)

pt−3 0.116∗∗∗
(3.350)

0.115∗∗∗
(3.307)

0.109∗∗∗
(5.792)

pt−4 0.049
(1.465)

0.047
(1.395)

0.041∗∗∗
(2.720)

pt−5 0.120∗∗∗
(4.143)

0.120∗∗∗
(4.108)

0.117∗∗∗
(7.205)

lt 0.005∗∗∗
(8.369)

0.005∗∗∗
(7.724)

0.005∗∗∗
(22.899)

st −0.009∗∗∗
(−8.654)

−0.009∗∗∗
(−8.576)

−0.008∗∗∗
(−10.763)

wt −0.053∗∗∗
(−14.267)

−0.053∗∗∗
(−14.010)

−0.052∗∗∗
(−16.290)

Conditional Variance Equation
ω 5.317∗∗

(4.066)
15.367∗

(1.824)
0.537∗∗

(2.560)
ϵ2

t−1 0.224∗∗∗
(5.167)

0.221∗∗∗
(4.898)

0.120∗∗∗
(4.084)

ht−1 0.678∗∗∗
(12.386)

0.678∗∗∗
(11.012)

0.908∗∗∗
(25.557)

ϵt−1
ht−1

0.274∗∗
(2.457)

lt −0.001
(−1.127)

−0.00002
(−0.923)

st −0.003
(−1.242)

−0.0001
(−1.318)

wt 0.002
(0.093)

−0.0001
(−0.381)

Various Information Criteria
AIC 6.565 6.569 6.552
SIC 6.614 6.630 6.617
HQC 6.576 6.592 6.584

Note: The table reports the results of the regression where the dependent variable is the
Czech electricity spot price, adjusted for outliers, trend and calendar effects. The conditional
mean and variance equations are modelled by means of AR(5)-X-GARCH(1,1), AR(5)-X-
GARCH(1,1)-X, and AR(5)-X-EGARCH(1,1)-X processes whose outcomes are displayed in
columns C, D, and E, respectively. The processes include exogenous variables as additional
regressors, i.e. electricity load lt, solar power generation st, and wind power generation wt.
The values in parentheses are t-statistics corresponding to the estimated coefficients. AIC
marks Akaike Information Criterion, SIC Schwarz Information Criterion, and HQC Hannan-
Quinn Information Criterion. Two-side statistical significance at the 1% level is denoted by
‘∗∗∗’, at the 5% level by ‘∗∗’, and at the 10% level by ‘∗’. The analysed sample spans from
01.01.2015 to 31.12.2019.
Source: Author’s computations.
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Table A.3: Results of the GARCH models for off-peak index

Off-Peak Index
C D E

Conditional Mean Equation
µ 24.566∗∗∗

(7.366)
27.311∗∗∗

(8.415)
25.820∗∗∗

(12.580)
pt−1 0.599∗∗∗

(21.078)
0.589∗∗∗

(21.173)
0.585∗∗∗

(24.193)
pt−2 −0.044

(−1.371)
−0.023
(−0.785)

−0.013
(−0.894)

pt−3 0.122∗∗∗
(4.105)

0.128∗∗∗
(4.962)

0.131∗∗∗
(7.046)

pt−4 0.024
(0.860)

0.017
(0.695)

0.010
(0.785)

pt−5 0.058∗∗
(2.194)

0.061∗∗∗
(2.584)

0.072∗∗∗
(4.304)

pt−6 0.022
(0.837)

0.024
(0.997)

0.022
(1.415)

pt−7 0.110∗∗∗
(4.793)

0.096∗∗∗
(4.497)

0.093∗∗∗
(5.013)

lt 0.002∗∗∗
(4.063)

0.001∗∗∗
(3.145)

0.002∗∗∗
(5.833)

st −0.0001
(−0.049)

−0.0004
(−0.371)

−0.0001
(−0.389)

wt −0.067∗∗∗
(−20.460)

−0.068∗∗∗
(−20.787)

−0.066∗∗∗
(−21.369)

Conditional Variance Equation
ω 7.042∗∗∗

(3.687)
6.784
(1.249)

0.699∗∗
(2.439)

ϵ2
t−1 0.213∗∗∗

(5.056)
0.218∗∗∗

(6.170)
0.023
(0.707)

ht−1 0.491∗∗∗
(4.485)

0.216∗∗∗
(3.688)

0.421∗∗∗
(6.312)

ϵt−1
ht−1

0.452∗∗∗
(8.984)

lt 0.0003∗∗
(2.547)

0.0001∗
(1.914)

st 0.033∗∗∗
(5.838)

0.002∗∗∗
(7.506)

wt 0.116∗
(7.094)

0.006∗∗∗
(7.319)

Various Information Criteria
AIC 5.914 5.840 5.838
SIC 5.956 5.891 5.893
HQC 5.929 5.858 5.859

Note: The table reports the results of the regression where the dependent variable is the
Czech electricity spot price, adjusted for outliers, trend and calendar effects. The conditional
mean and variance equations are modelled by means of AR(7)-X-GARCH(1,1), AR(7)-X-
GARCH(1,1)-X, and AR(7)-X-EGARCH(1,1)-X processes whose outcomes are displayed in
columns C, D, and E, respectively. The processes include exogenous regressors as additional
explanatory variables, i.e. electricity load lt, solar power generation st, and wind power
generation wt. The values in parentheses are t-statistics corresponding to the estimated
coefficients. AIC marks Akaike Information Criterion, SIC Schwarz Information Criterion,
and HQC Hannan-Quinn Information Criterion. Two-side statistical significance at the 1%
level is denoted by ‘∗∗∗’, at the 5% level by ‘∗∗’, and at the 10% level by ‘∗’. The analysed
sample spans from 01.01.2015 to 31.12.2019.
Source: Author’s computations.



. Appendix V

Table A.4: Diagnostics of the standardized residuals from the
GARCH models

Index Residuals Q(30) Q2(30) ARCH-LM

Daily Levels 39.535∗

Squares 26.547 8.854

Peak Levels 42.754∗∗

Squares 17.561 7.383

Off-Peak Levels 40.865∗

Squares 27.750 24.884

Note: Q(30) represents the Ljung-Box test statistic for the standardized residuals of AR(7)-X-
GARCH(1,1)-X (for daily and off-peak indices) and AR(5)-X-GARCH(1,1) (for peak index)
models. Analogous interpretation holds for the Q2(30) statistic of the McLeod-Li test for
the standardized squared residuals. The number in parentheses signifies the order of auto-
correlation we seek to examine and was chosen based on the studies of Efimova and Serletis
(2014) and Kyritsis et al. (2017). ARCH-LM denotes the Lagrange multiplier test, where
the lag order was chosen uniformly with that of the Ljung-Box test. Regarding the asterisks,
‘∗∗∗’ denotes the two-side statistical significance at the 1% level, ‘∗∗’ at the 5% level, and ‘∗’
at the 10% level.
Source: Author’s computations.



. Appendix VI

Figure A.2: ACFs of the standardized residuals from the GARCH
models

Note: The figure presents (a) autocorrelation function (ACF) of the standardized (st) resid-
uals of the AR(7)-X-GARCH(1,1)-X model for daily index, (b) ACF of the st residuals of
the AR(5)-X-GARCH(1,1) model for peak index, (c) ACF of the st residuals of the AR(7)-
X-GARCH(1,1)-X model for off-peak index, (d) ACF of the st squared (sqr) residuals of
the AR(7)-X-GARCH(1,1)-X model for daily index, (e) ACF of the st sqr residuals of the
AR(5)-X-GARCH(1,1) model for peak index, and (f) ACF of the st sqr of the AR(7)-X-
GARCH(1,1)-X model for off-peak index. The horizontal dashed lines represent two stan-
dard error limits of the ACF.
Source: Author’s computations.
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