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Abstract

This thesis focuses on the influence of renewable energy sources on the trans-
mission networks in Central Europe. Firstly, it gives an overview of the power
and transmission systems of Central European states. Based on the analysis,
three key causes of congestion and instability of the grid are identified. These
include (i) insufficient transmission capacity between northern and southern
Germany, (ii) Energiewende policy and (iii) existence of German-Austrian bid-
ding zone. To assess the exact impact on the transmission grid, ELMOD model
is employed. T'wo development scenarios for the year 2025 are evaluated on the
basis of four representative weeks of the year 2015. The first scenario focuses on
the effect of Energiewende on the transmission networks, the second one drops
out nuclear phase-out and thus assesses isolated effect of increased solar and
wind feed-in. The results indicate that higher feed-in of solar and wind power
increases the exchange balance and total transport of electricity between TSO
areas as well as the average load of lines and volatility of flows. Solar power
is identified as a key contributor to the volatility increase, wind power is iden-
tified as a key loop-flow contributor. Eventually, it is concluded that German

nuclear phase-out does not significantly exacerbate mentioned problems.
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Abstrakt

Tato prace se zaméruje na vysvétleni vlivu obnovitelnych zdroju na prenosové
sité ve stfedni Evropé. Nejprve jsou popsany energetické a prenosové soustavy
sttedoevropskych statu. Na zakladé této analyzy jsou pak identifikovany tti
klicové problémy, které ptispivaji k pretizeni a destabilizaci siti. Patii mezi
né (i) nedostatecnd prenosova kapacita mezi severnim a jiznim Némeckem, (ii)
politika Energiewende a (iii) existence némecko-rakouské obchodni zény. Pro
posouzeni téchto dopadu na prenosové sité byl vyuzit model ELMOD. Jsou
porovnany dva scénafe vyvoje pro rok 2025, a to na zadkladé ctyt reprezen-
tativnich tydna roku 2015. Prvni scénéf se zaméiuje na efekt Energiewende
na prenosové sité, druhy poté vynechava odstaveni jadernych elektraren a po-
suzuje tak pouze dopady zvysené produkce elektfiny ze slunecnich a vétrnych
zdroju. Vysledky ukazuji, ze vyssi ptitok energie ze solarnich a vétrnych
elektraren zvysuje bilanci vymeén a celkovy transport mezi jednotlivymi oblastmi
TSO. Stejné tak roste i prumérné zatizeni linek a volatilita toku. Klicovym
prispévatelem k narustu volatility jsou solarni elektrarny; vétrné elektrarny jsou
pak identifikovany jako hlavni pti¢ina kruhovych toku. Nakonec je zjisténo, ze
odstaveni némeckych jadernych elektraren vyznamnym zpusobem nepiispiva

ke zhorsovani zminénych problému.

Klasifikace JEL L94, Q21, Q48, C61
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Chapter 1
Introduction

European power industry has recently undergone a very dynamic development.
Among the environmental issues, one of the major drivers was the aim of EU
political establishment to reduce energy dependency of Europe. With regard to
fact that European fossil-fuel base and reserves are very limited!, the only way
of attaining the goal of increased self-sufficiency was the redirection of the en-
ergy sector towards locally produced energy coming from renewable resources.

Specifically, the strategy of the European commission, called ” Europe 2020”
presented on 3rd March 2010, set several targets for energy and enrironmen-
tal policies which are commonly known as 20-20-20 agenda. This means that
by 2020, the EU aims to reduce its greenhouse gas emissions by at least 20%
as compared to 1990, increase the share of renewable energy to at least 20%
of consumption, and achieve energy savings of 20% or more (European Com-
mission 2009). Furthermore in 2014, this agenda was updated and even more
ambitious targets in the form of 40-27-27 were set to be reached until 2030
(European Commission 2014a).

Another complex and ambitious project of the EU in energy sector is the
effort to create a European Energy Union which was officially launched in 2015
European Commission (2015a). The project includes five main objectives (Eu-
ropean Commission 2015b). In the context of this thesis, especially mentioning
the objective of ”fully integrated European energy market” (European Com-
mission 2016) is worthwhile.

There are many different examples of market integration in the EU which

! According to the BP Statistical Review of World Energy 2015, reserves of EU countires
account only for 0,3% of proved world oil reserves, 0,8% of proved gas reserves and 6,3% of
coal reserves.
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can be seen as precursors of future integrated market. One major example in
the region of Central Europe is the bidding zone of Germany and Austria®.

Nevertheless, as can be seen in this thesis, mentioned policies and objectives
are, under the current situation in the energy sector, quite in a contradiction. A
rapid increase of renewable energy sources has brought wide range of challenges
to whole electricity sector. Price distortions, instability of supply or capacity
of trasmission networks are generally considered to embody the most serious
examples of these challanges. At the same time, inappropriate delineation
and integration of the market contributes furthermore to mentioned problems
instead of eliminating them.

In the context of Central Europe, this can be demonstrated followingly.
With the development of solar and wind power plants in Germany, severe
problems with transmission occured. Excess production in the north has to be
transported to the consumption centres in the south and to Austria and other
energy deficient countries in southern Europe. The existing German grid is
not able to accomodate such a big feed-in of intermitent renewable energy and,
therefore, exhibits congestion. As a result, electricity flows through the sys-
tems of adjacent countries, Poland and the Czech Republic, and causes severe
problems in their grids as well. Furthermore, these problems are exacerbated
by the market integration, in particular by the existence of German-Austrian
bidding zone which enables these two countries to trade electricity disregarding
the physical grid constraints. Illustration is given in the figure 1.1.

The Czech, Polish and Slovak TSOs are, naturally, dissatisfied with the
state of current affairs as nobody compensates the expenses that have to be
incurred to tackle this problem. Whole situation becomes subject of heated
debates on the highest political levels. While Czech and Polish TSOs strive
for splitting up of the bidding zone (CEPS et al. 2012)3, or even for splitting
up Germany in more zones, Austrian bodies oppose this and try to avoid such
solution as it would significantly increase the cost of electricity there. Except
the political measures, TSOs also attempt to solve this problem by installing
phase-shifting transformers that should be able to stop the physical electricity
flows in case of emergency. On this example, we can see that higher amount of
installed VRES capacities induces grid congestion. Therefore, attaining both

proposed strategies of the EU is incompatible.

2Definition of bidding zone as well as other examples of market integration are given in
the section 2.4

3This split was also recommended by the Agency for the Cooperation of Energy Regulators
in September 2015. More details can be found in section 2.4.3
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Figure 1.1: Stylized map of situation in CE

LEGEND :
E centres of hydro production
7‘ centres of wind production

Z centres of solar production
nuclear power plants
[ German-Austrian bidding zone

CEPS, PSE, SEPS national transmission
system operators

Source: Author, based on maps from ENTSOE (2016a)

With respect to the fact that many academicians conducted research on the
topic of influence of renewables on spot or forward market prices of electricity
(Traber & Kemfert (2009); Cludius et al. (2014); Ketterer (2014); Meyer &
Luther (2004)), attention will be drawn to less inspected, but equally important
transmission networks issues.

Majority of the literature models and assesses the transmission network
issues in the context of Germany (Burstedde (2012); Kunz (2013); Kunz &
Zerrahn (2015); Schroeder et al. (2013); Egerer et al. (2014); Weigt et al. (2010);
Dietrich et al. (2010)). The contribtuion of this work is that, unlike many
others, it focuses on the whole region of Central Europe in the same detail as
Germany and particularly elaborates on the inlfuence of individual components
of Energiewende policy (i.e. renewable energy promotion and nuclear phase-
out) on the whole area. Furthermore, this thesis stresses the importance of
German - Austrian bidding zone which is mostly neglected in research.

With regard to what was mentioned in previous paragraphs, there are two
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key hypotheses in this work: i) Increased VRES feed-in and nuclear phase-out*
contribute to cross-border grid congestion in Cetral Europe and ii) Increased
VRES feed-in and nuclear phase-out cause volatility growth and thus contribute
to the destabilization of transmission networks in Central Europe.

Moreover from a conceptional point of view, this work should be seen as a
”critical scenario approach”. This means that the results must be interpreted
in the context of would be the impact of flows on the grid if nothing was done

in their development.

The thesis is structured as follows: Chapter 2 gives basic information about
the power and transmission systems of Central European states and introduces
brief history of renewable energy develompment in mentioned countries. Fur-
thermore, explanation of the mechanics of current regional market design with
attention paid to the bottlenecks is included. Based on this, loop and tran-
sit electricity flows are examined and a connection to the implementation of
renewables to power grids is shown. Chapter 3 covers the work of other re-
searchers on this topic. Chapter 4 contains the formulation, explanation and
application of the model as well as the description of datasets. It also focuses on
the definition of scenarios. Chapter 5 presents the results. Finally, Chapter 6

summarizes the findings.

4Increased VRES feed-in and nuclear phase-out are both essential parts of Energiewende
policy. Because of the major role of Germany in Central European power industry, En-
ergiewende is taken as an embodiment of both factors.



Chapter 2

Overview of power and

transmission systems

2.1 Czech power system

2.1.1 Current situation

After Germany and Poland, the Czech Republic’s production of electricity is
the third largest in the region of CE which is a stable trend as the ordering has
not changed since the birth of the Czech Republic in 1993 (EUROSTAT 2016).

According to the Energy Regulatory office (ERO), 86003.4 GWh of elec-
tricity was generated in all power plants during 2014 in gross terms. When
considering the losses and electricity needed for own generation, 79885.9 GWh
was left at disposal (Energy Regulatory Office 2015). The biggest contribu-
tors to total production were solid fuels and nuclear power plants. The exact
production pattern is depicted in figure 2.1.

At the same time, net balance with foreign countries accounted for 16300
GWh of export! which maked the Czech Republic the third largest exporter of
electricity in Europe (Energy Regulatory Office 2015).

Production shares

After having summarised total numbers, we can proceed to their decomposition
to see the sources and, above all, general trends in production. Czech power

industry has traditionally been based on home natural resources which are,

! According to the previous year’s ERO reports, the only year when Czech Republic be-
came net electricity importer was the year 1995. Moreover, the balance with other countries
did not decline under 11 TWh since 2002.
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Figure 2.1: Installed capacity and electricity generation in the Czech
Republic

Solar PV Solar Wind
Hydro 3% 1%

Biomass and Wastes
5%
Gases

7

Hydro \3 5% §
AN
FIN
)

\ Solid Fuels

48%
Combustible
Nuclear Fuels
20%

60%

Nuclear : 2014: 86 TWh

2014:21970 MW 35%

(a) Installed capacity as of 31.12.2014 (b) Electricity production by fuel type 2014
Source: European Commission, DG Energy (2016a)

however, scarce to a large extent. Thus, the only resources available histori-
cally in reasonable quantities were fossil fuels (hard coal and brown coal?) and
uranium. Dominance of these resources in the Czech energy mix can be seen
throughout the years (figure 2.2)

2.1.2 Renewables in the Czech Republic

Since the introduction of renewable target, Czech power industry had to react
and try to diversify the electricity portfolio to comply with the 13% renewables
target set by European commission for the Czech Republic (European Com-
mission 2009). As a response, certain reduction of traditional power plants
fuels occured to the benefit of renewable energy sources (RES)?, especially
photovoltaics, wind and biomass. Advancement of these particular types of
renewable energy is given by several factors. First of all, with respect to the
fact that Czech Republic is a landlocked country on stable tectonic plates and
fully exploited ”poor hydro energetic potential”’* (Paces 2008), utilization of

2Nevertheless, reserves of coal are, de facto, very constrained as a consequence of mining
limits which are imposed on deposits in northern Bohemia.

3 In Czech legal framework, definition of RES can be found in the article 2 of the act
165/2012 Coll. and states following: ”As renewable non-fossil natural resources are consid-
ered wind energy, solar energy, water energy, geothermal energy, air energy, biomass energy,
landfill-gas energy, sewage treatment plant gas energy and biogas energy”.

4Potential was quantified to reach only 350kWh /hectare mainly due to the fact that the
Czech Republic is the river-source area. (Paces 2008)
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Figure 2.2: Historical overview of installed capacities and electricity
generation in the Czech Republic
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tidal, geothermal or further hydro power was not feasible. Hence, solar power,

wind and biomass remained as the only possibilities.

Brief development of Czech renewable energy

Even though the actual boom of RES, especially photovoltaics, and correspond-
ing transmission grid problems began in 2009, we have to go back to 2006 and
subsequent years for a full reasoning. In 2006, The Act on the Support of Elec-
tricity from Renewable Energy Sources (Vldda CR 2005)° was introduced as
an implementation of the Directive of European parliament no. 2001/77/EP.
In this document, we can find explicitly stated obligation of the transmission
or distribution system operator to connect such sources into the grid® and buy
electricity from such producers (Vldda CR 2005). Moreover, generous sub-
sidization schemes in form of feed-in tariffs with strong irrevocability rules”
were also included. In few subsequent years, particularly in 2008, several other
factors contributed to the later acceleration. Bechnik et al. (2010) and Prusa

et al. (2013) speak about three factors - appreciation of Czech Crown up to

°It is important to mention that this Act 180/2005 Coll. was abolished on 1st Jan 2013
and replaced by the act 165/2012 Coll.

6The only exception was the case when local grid capacity was not sufficient

"In Paragraph 6 of Act 180/2005 Coll, it was stated that the feed-in tarif is set so to
guarantee the payback period to be shorter than 15 years. At the same time, prices were
guarantedd for 15 years (later extended to 20) and price reduction was constrained at max-
imum of 5% per year.
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23,7 CZK per Euro, 20% fall of prices of solar panels and extension of feed-in

tariff guarantee from 15 to 20 years.

Figure 2.3: Solar and Wind development in the Czech Republic
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In figure 2.3, afore mentioned extreme growth of installed capacity of solar
power plants can be seen between 2008 and 2012. In this period, the cum-
mulative capacity grew little more than 50 times! To further illustrate the
seriousness of the situation, only during 2009 and 2010, applicants asked the
distribution companies to connect up to 8000 MW (Vrba et al. 2015) which
resulted in the request of Czech transmission system operator, the company
CEPS, to temporarily stop the approvals of new capacities (CEPS 2010b). De-
spite the fact that this step was strongly opposed by many solar investors, it
was rational outcome of the situation®. After such critical situation, Czech po-
litical elites were forced to act quickly. Changes in laws were made in order to
stabilize photovoltaic base?. After that, approvals for connections to the grid
were allowed again in January 2012 (Klos 2012).

This piece of experience illustrates, on quite a small local scale, one of the
most serious issues that will be of greatest interest in further work - the influ-
ence that some RES have on transmission networks. By the word ”some”, pri-

marily ”variable renewable sources” including wind and solar power plants are

8In the energy study of the company EGU, maximal safe installed capacity of variable
energy sources is set to 1650 MW between 2010-2012 and 2000 MW between 2013-2015.Thus,
from this perspective, security was endangered already in 2010 (1727 MW of solar and 213
of wind installed)(EGU Brno 2010)

9Prices were decreased up to 50% by an amendment and, later, feed-in tariffs were com-
pletely abolished for most power plants (Vrba et al. 2015)
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meant. The reason is that unlike traditional and other RES power plants, these
two types of plants have completely different requirements on the construction
and management of networks that vary greatly from our present centralized

transmission system models.

Transmission network models

In the existing centralized model, several large-scale electricity production units
exist (installed capacity from hundreds to thousands of MW) with controllable
and rather stable output supplying final-consumers for even quite long dis-
tances. Transmission of electricity is thus one-way - from a producer to a
consumer.

Unlike the production units in this model, variable RES are based on many
small and scattered production units delivering small, intradaily volatile and
hardly predictable amount of electricity, depending on surrounding weather
circumstances.

System, that can absorb such flows, is called decentralized. In the de-
centralized model, combination of central large-scale power plants with local
production is used. In case of controllable RES like biomass or waste incinera-
tors, small water plants or cogeneration units, no serious integration problems
occur. Nevertheless, when moving to photovoltaics or wind, enhanced trans-
mission and distribution grids with some elements of electricity storage are
necessary to accomodate the needs of all market agents. Such grids are called
"smart grids”.

The essential challenge lies in the fact, that "smart grids” are not available
almost anywhere and thus current centralized model must be used. All further

work has this set-up as inbuilt assumption.

2.1.3 Czech transmission system

Czech transmission system consists of country-wide control area which is un-
der the maintenance of the Czech transmission system operator, state - owned
company CEPS. According to the TSO, Czech backbone transmission system
constitutes of 3510 km of 400 kV lines and 1909 km of 220 kV lines which were
finished in the 1980s and 1970s respectively. In addition, the system comprises
41 substations with 71 transformers for both basic voltage levels. The transmis-
sion network serves three purposes. Firstly, it transmits electricity throughout

the whole Czech Republic. Secondly, it supplies electricity to distribution net-
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works from which electricity is then delivered to final consumers'®. Thirdly, it

is part of European international transmission network (CEPS 2016b).

Figure 2.4: Czech transmission network
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CEPS, as a TSO, has several key responsibilities. Primarily, it is legally
obliged to ensure the stability of the grid by balancing the supply and demand
of the electricity. Next, it is in charge of maintenance and development of
the grid. Eventually, it administers the transmission of electricity between the

producers and distributors of electricity and collaborates with foreign TSOs

(CEPS 2016a).

Grid development

Due to the fact that the backbone transmission system in the Czech Republic
merely reflects the design at the time of completion at end of the 1980s, in-
vestments to the grid enhancement and reinforcement need to be done so that
the grid is able to cope with upcoming challanges'!. CEPS is well aware of
this fact and thus develompnent of the grid is among its indispensable, ongoing
activities (CEPS 2016c¢).

The process of planning the further development is mostly driven by the

"Ten-year investment plan for the development of the transmission system”.

10Tn the Czech republic, distribution is ensured by there companies: PRE distribuce, a.s.,
CEZ distribuce, a.s., E-ON distribuce, a.s.

HExact factors that are anticipated to affect the decision about grid investment are given
in CEPS (2016c)
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Current plan works with the time scope of 2015-2024. Following objectives are

defined in the document:

a) system sections necessary to be constructed or extended in the following 10

years

b) all investment projects already decided by the company to be implemented,

including implementation schedule

¢) new investment projects to be implemented in the following 3 years, includ-
ing implementation schedule (CEPS 2015b)

Especially the objective a) is of the greatest concern due to the international-
related impacts on the Czech transmission system as will be shown in the
sections 2.2 and others. Pursuant to its legal obligation, CEPS prepares the
implementation of measures aiming to ensure system stability. These include
expansion and upgrade of existing substations, construction of second circuits
on selected lines as well as building of several new ones. Installation of phase-
shifting transformers at Czech-German interconnectors counts also to consid-
ered options (CEPS 2015b). Detailed list of intended projects can be found
in CEPS (2016c). The total volume of investment funds for these projects
amounts to CZK 44.90 bn (CEPS 2015b).

2.2 German power system

2.2.1 Current situation

Germany is an absolute leader in the amount of produced electricity in CE
as well as in Europe in general (EUROSTAT 2016). This position has been
maintained for several decades.

Based on the data from German Ministry of Economy and Energy (BMWi),
651.6 TWh of electricity was produced in Germany during 2015 (BMWi 2016).
The share of solid fuels is similar to Czech Republic, with the only difference
that almost 57% of such electricity was generated by burning brown coal. It
is also worth mentioning that renewables accounted for 30 % of the total elec-
tricity production. Out of this, the most important sources are on shore wind
turbines, biomass and solar power plants.

Due to the fact that Germany is a federation of several states and its elec-

tricity production represents major share of whole CE production, it is desirable
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Figure 2.5: Installed capacity and electricity generation in Germany
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to have a look at the electricity production in particular federal states as this

varies a lot (figure 2.6).

Figure 2.6: Electricity generation by types in particular Federal states
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From the standpoint of installed capacity, German energy sector appears to
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be quite progressive. At the end of 2014, 46.72% of total installed capacity can
be assigned to renewable energy sources. This is a second highest number!? in
the CE region.

Germany has been also net electricity exporter in the long run'. Even
though the amount fluctuates throughout years, Germany exported 50.1 TWh
of electricity in 2015 (BMWi 2016).

Production shares

Likewise the Czech Republic, Germany has very limited natural resources.
Among the feasible ones, brown and hard coal are of greatest importance.
The historical power mix corresponded to such resources allocation; most of
electricity was generated by coal and nuclear power plants (see figure 2.7). Nev-
ertheless, the situation started to change in early 90s when Germany decided
to pioneer in bringing renewables to the life and started the energy transition,

later called Enegiewende'*.

Figure 2.7: Historical overview of installed capacities and electricity
generation in Germany
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2.2.2 Renewables in Germany - Energiewende

German renewable story differs from the Czech case to a large extent. Firstly,

it has much longer history and, secondly, much more significant volume as

12 Austria produces the largest share of electricity from renewables.

13Germany was net importer in 2002 for the last time

4The term ”Energiewende” (which we translate here as ”energy transition”) did not just
come about in the past few years. In fact, it was coined in a 1980 study by Germany’s
Institute for Applied Ecology (Morris & Pehnt 2012)



2. Overview of power and transmission systems 14

Germany is, in general, the biggest producer of electricity in CE. The latter

feature is shown in the next figure 2.8:

Figure 2.8: Wind and solar production in CE* and share of Germany
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Consequently, German decisions and actions about energy policies affect
whole region fundamentally. For this reason, we will have detailed look at the

German power and transmission situation.

Brief history of Energiewende

The history of German'® energy transition dates back to the early 1970s when
opposition against conventional, especially nuclear, power plants stated to crys-
talize in German society. The factor that significantly strengthened this move-
ment was the planned construction of nuclear power plant in the town of Wyhl
(Morris & Pehnt 2012). Since these public upheavals in Wyhl in 1973, which
were further exacerbated by 1986 Chernobyl accident and 1997 Three Mile
Island accident, persistent opposition to nuclear energy have been flourish-
ing!®. In the Chernobyl aftermath, some political parties, namely SPD and

The Greens, started to reflect this stance by altering the course towards nu-

15We talk here about the West Germany, officially Federal Republic of Germany
16Right after the Chernobyl crisis, 86% of Western Germans were in favour of nuclear
phase out (Hake et al. 2015)



2. Overview of power and transmission systems 15

clear phase-out and environmentalism, in particular RES support (Hake et al.
2015; Cernoch et al. 2015).

Practical implementation of RES support came into force on 1 January
1991 in the form of Grid Feed-In Law'”. This was a first attempt to implement
predecessors of feed-in tariffs (Lang & Lang n.a.).

Since this period, we can see gradual increase of RES installed capacity
which was considered as very slow in the eyes of German public. An answer

t18

came in 2000, when much subtle law, Renewable Energy Act'® | was adopted

by SPD and Greens administration and replaced StrEG. According to Morris
& Pehnt (2012), the main difference between this Act and the Feed-in Act of
1991 was that feed—in tariffs (FiT) were no longer linked to a percentage of
the retail rate, but were instead differentiated by the actual cost of the specific
investment in terms of system size and technology type. Moreover, the grid
operators were obligated to accept electricity from third-party renewables, to
feed in the electricity and to pay the fixed prices. FiT were guaranteed for 20
years. The cost of the FiT is covered as a surcharge on final customer electricity

bills?®. Figure 2.9 gives a graphical summary of above mentioned development.

Figure 2.9: Gross renewable electricity generation and and develop-
ment of energy laws
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On top of that, second aspect of Energiewende, nuclear phase-out, was

17Stromeinspeisungsgesetz, StrEG

18Gesetz fiir den Ausbau erneuerbarer Energien (EEG)

19Tt is evident that Czech RES laws sought a lot of inspiration in EEG as eminent features
are very similar
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implemented and scheduled to be completed in 2022 (Morris & Pehnt 2012).
The agreement between Government and major power utilities companies was
negotiated even despite the fact that the companies had no right to any kind of
compensation. The deal was made so that the lifetime of existing nuclear power
plants (NPP) was limited to 32 years on average, and on this basis every NPP
was granted so called residual electricity volume. The effective date for the
beginning of the remaining terms was determined retrospectively on 1 January,
2000. However, the government made it possible to transfer left-over power
quantities from unprofitable (older) to profitable (younger) power plants (Hake
et al. 2015). Phase-out schedule can be seen in the picture 2.10.

Figure 2.10: Nuclear phase-out in Germany

Source: Institute of Applied Ecology, BMJ, own calculations
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Another amendments of the EEG were made in 2004, 2009 and 2012%
which further induced investment into the RES and led to their sharp increase
observable in recent past. In 2010, simultaneously with EEG, Merkel’s admin-
istration introduced document known as ”Energiekonzept”?! where ambitious
short run and long run goals of Energiewende were defined (Hake et al. 2015).
These goals also complied with European Directive 2009/28 /EC. Overview can
be found in the table 2.1.

202004: improved legal status of operators of RES power plant + feed-in tariffs modified
(inclusion of solar power). 2009: requirement on builders to implement renewable heating
systems. 2012: encouragement of direct marketing. Option between feed-in tariff and market
premium Lang & Lang (n.a.)

21Full name: Energiekonzept fiir eine umweltschonende, zuverlissige und bezahlbare En-
ergieversorgung
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Table 2.1: Electricity related Energiewende goals

2020 2030 2040 2050

Greenhouse gas emissions  at least -40% at least -55% at least -70%  at least -80% to -95%
(compared to 1990)

Gross electricity consump- -10% -25% -25% -25%
tion (compared to 2008)
Share of electricity gener- 25%

ation from combined heat

and power plants

Share of RES on electricity more than 35% more than 50% more than 65% more than 80%
consumption

Source: (BMWi 2015b, p.7)

Consequences of StrEG, EEG and Energiekonzept

German concept of Energiewende delivered both success and problems. In
the first case, we can see that installed capacity as well as production from
renewables is important part of electricity mix nowadays which is in accordance
with set goals. Following table 2.2 gives us an overview of the effects of StrEG
and EEG on the growth of RES sources.

Table 2.2: Growth of renewable production under different laws

From 1991 to 2000 (StrEG), TWh From 2001 to 2014 (EEG), TWh

Gross production Absolute growth Average yoy growth Absolute growth Average yoy growth
Wind 9,4 0,94 46,5 3,10

Water 9,9 0,99 -3,1 -0,21
Biomass 1,3 0,13 414 2,76

Solar 0,0 0,00 34,9 2,33

Wastes 0,6 0,06 4.3 0,28

Data source: BMWi, 2014

On the other hand, all this success is owed to the munificent subsidiza-
tion policy that was incorporated in laws from the very beginning. There are
numerous studies that attempted to assess the scheme from the perspective
of expenses by various methods. Although it is not the aim of this thesis to
analyse these aspects deeper, there is certain necessity to sketch basic findings.

The results are in general the same - RES decrease price of electricity in
futures markets and increase their volatility in a spot markets (Ketterer 2014;
Keles et al. 2013). At the same time, consumers have to face surcharge that
significantly raises final prices. As a result, price distortions and redistributions

occur on the electricity market (Cludius et al. 2014). Mentioned principle
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follows from so called merit order effect (MOE)?? which is depicted in the
figure 2.11.

Figure 2.11: Merit order effect
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The MOE lowers prices on exchange markets as RES start producing?.
Crowding out of producers occurs whose marginal production costs are the
highest?*. Subsequently, renewables and cheapest conventional sources are left
on the market; the more expensive ones are able to cover the costs only dur-
ing the peak-load times. The distortion and redistribution is grounded in the
surcharge that is paid to RES producers at the same time®® (Cludius et al.
2014). At the end, this set-up implies very interesting paradox. Whilst the
market price in Germany is one of the lowest in Europe, prices for households
and production sector are one of the highest (Cernoch et al. 2015).

Another issue of eminent importance that comes along with Energiewende is
connected to the set-up of the power and transmission systems whose nature has
been challenged since the sharp increase of RES production. The main problem

lies in the fact that RES plants, especially solar and wind ones, are situated

22Merit order effect describes the lowering of power prices at the electricity exchange due
to an increased supply of renewable energies. Power suppliers of renewable installations have
almost no operating costs (since they do not need fuel or much manpower). That means they
lower the entrance price and push more expensive conventional producers out of the market
(Appunn 2015)

21n 2013, MOE was estimated to account 3 Bn Eur (Breitschopf et al. 2015)

24in principle hard coal, gas and oil power plants (Cludius et al. 2014)

25 According to BDEW, total EEG surcharge accounted for 18.78, 23.68 and 21.82 Bn EUR
without VAT in 2013-2015 respectively BMWi (2016).
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in the places where natural conditions are the best. In addition, these sources
require treatment which completely differs from the conventional controllable
resources. The major differences were described in the previous text. The
biggest problem of Energiewende concept was the fact that this aspect was
practically not solved. As a result, an enormous inflow of renewable current has
to be incorporated into the system which exemplifies primary issue of today’s

energy industry.

Reform of EEG

Before we proceed to the German transmission system, it is necessary to men-
tion how were described Energiewende drawbacks reflected by political repre-
sentation. In August 2014, major reform of EEG took place. The incentives

were threefold.
1. To do something about the enormous price for final customers
2. To reduce the market distortions coming from the FiT based subsidization

3. To solve unbearable situation about transmission flows (Lang & Lang

n.a.)

In the first place, net annual growth corridors for each type of power plants
were set?® which should have contributed to better control of installed capacity.
Also, the surcharges were tied to the obedience of the rules for the corridors.
In the second place, FiT were declared to be removed by system of market
feed-in premiums which should force producers to behave more on market ba-
sis (Cernoch et al. 2015). Last but not least, EEG 2014 dedicates several

paragraphs to legal obligation of TSOs to ensure proper grid connections.

2.2.3 German transmission system

German power grid seems to exhibit much more complexity than the Czech
one, which should be of no surprise as both the amount of electricity and area
of Germany are much greater than in the Czech case. The grid consists of four
stages. Three are subject to distributional grid and one, extra high voltage grid
(220 kV and 380 kV), embodies the transmission system. Total length of the

260Onshore wind power: net annual growth corridor target of 2500 MW; Offshore wind
power: reduction of the national targets for offshore wind power from 10 GW to 6.5 GW by
2020 and from 25 GW to 15 GW by 2030; Solar power: gross annual growth corridor target
of 2500 MW, Biomass: gross annual growth corridor target of 100 MW (Lang & Lang n.a.)
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transmission network accounts approximately for 35200 km (Flechter & Bolay
2015).

There are four TSOs in Germany. Each of this companies was previously
owned by one of the big four utilities. There have been, however, a number of
changes to the ownership structure in recent years, as the big utilities divested
transmission assets for a number of reasons, including regulatory pressure of
the European Commission?” and German government?®. This have poured out
into the sale of assets to independent shareholders or legal unbundling from the
parent company (IEA 2013). Resulting list includes following operators: Ten-
neT, Amprion, 50Hertz Transmission and TransnetBW. Some further details
about the operators can be found in the table 2.3. Graphical division of areas

of operation is shown in the figure 2.12.

Figure 2.12: Transmission system operators in Germany
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Likewise in the Czech Republic, TSOs are responsible for the secure trans-
mission of energy, constant monitoring of the balance between the demand and

supply and intervening in the market if necessary. In addition, they are respon-

2"We refer here to the unbundling initiative anchored in the The European Electricity
Market Directive (Directive 2009/72/EC).

28 According to Energy Industry Act of 2005 (Energiewirtschaftsgesetz, or EnWG), trans-
mission and supply were required to be unbundled starting in 2005 (Agora Energiewende
2015)
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Table 2.3: German transmission system operators

Name Ownership Ownership HQ Area Population  Lines  Transformer
pre-unbundling  after unbundling km squared milions km stations

TenneT E.ON State of The Netherlands, Bayreuth 140 000 20 10 700 115
100%

50Hertz Vattenfall Elia and Elia Asset 60%; Berlin 110 000 18 9 840 5
IFM 40%

Amprion RWE RWE 25.1%, Commerz Real Dortmund 73 100 27 11 000 160
AG 74.9%

TransnetBW  EnBW EnBW 100% Stuttgart 34 600 11 3 363 80

Source: Feix et al. (2015), IEA (2013), Agora Energiewende (2015)

sible for the maintenance of the grid and its expansion as needed (TENNET
n.a.). The TSOs are supervised and regulated by the German federal network
agency, Bundesnetzagentur (BnetzA) which ensures discrimination free grid
access and, since 2011, has also played an essential role in implementing the
grid expansion codified in the Grid Expansion Acceleration Act (NABEG).

Challanges to German grid

As we sketched earlier, German transmission grid faces severe problems. In
the past, electricity generation was based on two criterions: Availability of
resources in place or in proximity and close location to the demand. The first
case can be observed on the distribution of coal power plants in coal reservoirs
in western and eastern Germany, the latter case can be seen on the existence
of nuclear power plants in southern Germany (Flechter & Bolay 2015).

Today, the main challenge lies in the complete transition from the old model
as many bottlenecks and congestion in the transmission system occur. The rea-
sons are twofold. Firstly, there is the goal of increasing electricity production

from renewables?.

Centres of electricity consumption situated mostly in the
south and west of the country seldom overlap with regions suitable for most
economic production of renewable electricity. These are located in the north of
Germany where, on the contrary, electricity consumption is low. The electricity
generated there must therefore be transported over long distances to the con-
sumers in north-south way. In the process, the existing network is frequently
reaching its capacity limits (Bundesnetzagentur 2015).

The second goal, related to nuclear phaseout, further contributes to the
north-south grid pressures. Nuclear power plants are mostly located in southern

regions, Bavaria and Baden-Wiirttemberg, as can be seen from the map 2.6.

29The greatest RES increments are projected to come from off-shore wind turbines in the
North Sea
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To be more specific, 8386 MW of nuclear installed capacity in these two states
should be disconnected from the grid by 2022. The loss of capacity is not
expected to be fully offset by new installed capacities, which is the result of
limited RES potential (Flechter & Bolay 2015).

Having seen the effects of planned energy transition in form of increase of ca-
pacities in the north and its decline in the south and combining it with the cur-
rent situation of intra-German electricity balance®?, the necessity of strength-
ening the infrastructure in north-south direction is unquestionable. This is also
a standpoint of both, German authorities (BMWi 2015a) and especially neigh-
bouring TSOs®'. Nevertheless, the volume of the infrastructure extension as
well as the realization itself seems to be a matter of controversy and contributes
thus to prolongation of problems.

The grid expansion agenda is backed by two laws - Power Grid Expansion
Act (EnLAG) from 2009 and Federal Requirements Plan Act (BBPIG)3? of
2013.

EnLAG legislature specified 23 mostly north-south transmission lines in the
length of 1876 km that need to be urgently built to preserve the stability of
the system in the environment of increasing RES production. The construc-
tion should have been finished by the end of 2015 (Flechter & Bolay 2015).
Nonetheless, in the second quarter of 2015, only 8 kilometers of lines were built
which gives 487 km with previous construction. Estimates now calculate with
40% being built till the end of 2016 (Bundesnetzagentur 2016). BBPIG, which
came into effect in July 2013, added another 36 planned extension lines out of
which 16 are considered of cross-regional or cross-border importance. Corridors
of future networks are now determined and a public discussion about the exact
tracing is in progress (BMWi 2015¢).

Mainly EnLAG activities take up major project delays which can be as-
cribed to the negative public opinion and resistance which accompanies the

network construction®. The general public refuses the grid construction in the

39The balance design is such that southern regions import electricity whereas norther
regions export it.

31The international dimesion of this issue - so called loop flows - will be shown next
subchapter

32EnLAG stands for Gesetz zum Ausbau von Energieleitungen, BBPIG stand for Bundes-

bedarfsplangesetz
33A  lot of commotion is present at the realization of  biggest
north-south oriented lines. Examples can be found here:

http://www.ft.com/cms/s/0/756454dc-a2d6-11e3-ba21-00144feab7de.htmlaxzz3razksGUb
or here: http://www.faz.net/aktuell /wirtschaft /wirtschaftspolitik /netzausbau-so-kommt-
der-oekostrom-in-den-sueden-12786111.html
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Figure 2.13: Future extension of German transmission lines
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vicinity of their places of living and requires mostly the underground cable so-
lutions34+3%. This is, to a certain extent, interesting paradox as wind and solar
parks have previously been mostly approved®®. As a result, it barely seems
that fast short term improvement with mentioned 40% target is foreseeable.

As we will see in next sections, urgent completion of north-south lines is
absolutely crucial in context of the whole region. ”As long as the new power
lines between north and south Germany are not completed, the problem of
a lopsided system that requires frequent interference from grid operators will
only worsen” (Appunn 2015).

34Nevertheless, this is estimated to be up to 5 times more expensive than ordinary lines.
Kilometre of lines costs 1,2 Mio EUR whilst kilometre of cable costs 6 Mio EUR, (Rapp 2012)

350mne such recently finished example can be found in the Rheinlad-Westfalen fed-
eral state. (Source: http://www.welt.de/wirtschaft/energie/article146848975/Erdkabel-
fuer-Strom-schaffen-viele-neue-Probleme.html)

36 According to the opinion poll of Agentur fiir erneurbare Energien from August 2015,
93% of inhabitants support or strongly support Energiewende in general. Solar parks and

wind plants in the surroundings are positively seen by 77% or 59% respectively (Agentur fiir
erneubare Energien 2015)
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2.3 Power systems of remaining CE countries

2.3.1 Austria

Current situation

With 83 % share of renewables on total electricity generation, Austria is a
leading nation in CE in ecological production. This is given by the presence of
the Alps on the Austrian territory which are very rich source of water energy.
As can be seen in the figure 2.14, hydro power is thus a major contributor to

the total renewable share.

Figure 2.14: Installed capacity and electricity generation in Austria
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It is important to note that majority of the hydro power plants’ installed
capacity exists in the form of pumped storage power plants (7969 MW). The
remaining 5599 MW of hydro capacities are then ordninary run-of-river power
plants (E-CONTROL 2016).

According to the data of European Commision, 65.4 TWh of electricity
was generated in Austria. Regargind the balance, net import accounted for
9.275 TWh in 2014 which corresponded to 13.46% of 2014 inland consumption
(European Commission, DG Energy 2016a; E-CONTROL 2016). This pattern
can be moreover observed from the very long-term perspective3”

Moving to the other renewables, especially wind and solar plants, 2871 MW

of intermittent capacities were installed in 2014. This corresponded to 12% of

3TThe last year, when the courtry was net exporter of electricity, was in 2000 (European
Commission, DG Energy 2016a)
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total installed capacity. Historical overview and development of the renewable

sources for remaining CE countries can be seen in the figure 2.4 below.

Table 2.4: Development of VRES in Austria, Slovakia and Poland

Country Installed MW 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

SK Wind 0 0 0 3 3 5 5 5 5 3 3 3 3 5 3
Solar 0 0 0 0 0 0 0 0 0 0 19 496 513 588 533

AT Wind 50 67 109 322 581 778 935 968 988 994 981 1080 1316 1645 2086
Solar 5 7 9 23 27 30 36 40 49 71 154 317 363 626 785

PL Wind 4 19 32 35 40 121 172 306 526 709 1108 1800 2564 3429 3836
Solar 0 0 0 0 0 0 0 0 0 0 0 1 1 2 27

Source:  European Commission, DG Energy (2016a)

Transmission network

Austrian transmission network, operated by the company APG, plays a key
role in Central Europe as it is a crucial cross-road for transport of electricity
form the Czech Republic and Germany to south-eastern European countries.
The high-voltage transmission grid consists of 380 kV (2577 km), 220 kV (3212
km) and 110 KV (1182 km) of lines summing up to 6971 km. There are also
63 substations (APG 2016).

The responsibilities of APG are similar to previous TSOs and include trans-
port coordination, grid operation management, load flow optimisation and con-
gestion management as well as grid development. Especially a grid development
is a current topic in Austria. In 2015, ten year Network development plan was
approved which proposes grid reinforcement and expansion measures to meet
the common challanges of European energy transition. These measures include
upgrade of existing lines to higher voltage levels, construction of substation

and transformers as well as 370 km of new transmission lines (APG 2015).

2.3.2 Slovakia

Current situation

Slovak production as well as consumption of electricity is the lowest in the
region. According to European Commission, DG Energy, 27.4 TWh of elec-
tricity was produced in Slovakia from the power plants with installed capacity
of 8092 MW. The greatest share (57%) came from nuclear power plants and
hydro power plants (16%) which are situated mostly on coutry’s greatest rivers
(Danube, Vah). As well as the Austrian power system, Slovak system is typi-
cal of low share of fossil fuels on total electricity production (20%) (Fig. 2.15).



2. Overview of power and transmission systems 26

From the balance perspective, Slovakia is net electricity importer since 2006
when it had to shut down part of Jaslovské Bohunice nuclear power plant. In
2014, imports accounted for 1.1 TWh which represents 3.9% of consumption.
The amount of imports between different years substantially varies (European
Commission, DG Energy 2016a; Ministersvo hospodarstva Slovenkej republiky
2015).

Figure 2.15: Installed capacity and electricity generation in Slovakia
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Except hydro plants, renewable sources in Slovakia are centered around
biomass, biogas and solar power plants. The installed capacity of wind power
plants in negligible (3 MW in total of two wind parks in 2014). Exact overview

and developmet is given in the table 2.4.

Transmission network

Likewise the Czech grid, Slovak transmission network was for a very long time
part of common Czechoslovakian system which was developed together as one
system. This explains the extraordinary good interconnection capacity of Slo-
vak network, which reaches as high as 61% (2.5, and the absence of bottlenecks
on the Czech-Slovak border.

It is also important to note that Slovak grid is important in the international
context for the Czech Republic as exports to Slovakia are almost fully passed

further on Hungary®.

38In 2014, 9392 GWh of electricity was imported from the Czech Republic and 9356 was
exported to Hungary (Ministersvo hospodarstva Slovenkej republiky 2015)
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The high-voltage grid itself is mantained by the state owned company SEPS
which acts as a Slovak TSO. It is responsible for 1953 km of 400 kV lines, 826
km of 220 kV lines, 80 km of 110 kV lines and 26 substations.

Also the Slovak grid will be subject to reinforcements and upgrades. In
2014, SEPS issued Ten year development plan for the years 2015-2024. In here,
investments reaching 564 mil EUR are outlined. They concern mostly internal
advancement of infrasturcture as well as expansion of cross-border transmission
lines, particularly on Slovak-Hungarian borders. All other border profiles are
not included in projected investment plans as their capacitiy is sufficient (SEPS
2014).

2.3.3 Poland

Current situation

Polish power system is characteristic by the reliance on coal power plants which
are mostly feeded by home produced lignite and hard coal. Out of 179.3 TWh
of electricity production, 81 % was generated by coal fired power plants in 2014.
Hard coal power plants supplied 80.24 TWh and lignite power plants 54.2 TWh
(PSE 2015¢). Second most utilized source were then biomass and wind power

plants (6% and 5% respectively). Detailed overview is given in the figure 2.16

Figure 2.16: Installed capacity and electricity generation in Poland
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Especially the wind power plant installed capacity growth was significant
in past years which can be mainly attributed to the fact that Baltic sea and

surrounding regions offer suitable conditios for wind production. Since 1998,
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it thus evinced almost exponential growth which slowed a bit in recent years.
Nevertheless, we can still see almost 3.5 time increase between 2010 and 2014
(table 2.4)

Regarding the international balance, Poland is structurally electricity ex-
porter. Nevertheless, in 2014 we can observe import of 2.16 TWh which ac-
counted only for 1.36% of annual consumption for 2014 (PSE 2015¢).

Transmission network

Polish high-voltage transmission network, whose operator is the company PSE,
consists of 3 types of lines - 1 line of 750 kV (114 km), 89 lines of 400 kV (5984
km), 167 220 kV lines (7971 km) and 106 substations. There is also one DC
connection in the form of undersea cable of 450 kV of 254 km (but only 127
km is mantained by PSE) (PSE 2015b).

Generally, Polish system suffers form very low denstity in northern areas
as well as very low interconnection level of only 2% which entails severe prob-
lem when transmission of electricity is considered. Very often, congestion and
hitting up of limits of the lines occur. The most critical situations appear on
Polish-German border where only 4 interconnectors on the voltage level 220
kV are present.

Contemporary ”Development Plan for meeting the current and future elec-
tricity demand for 2016-2025” takes this fully into account. The existing inter-
connectors are planned to be upgraded to 400 kV levels. Moreover, after the
grid in western Poland is reinforced by 2020, new interconnector is projected af-
ter 2025. PSE also plans major infrastructure enhacment within whole Poland
which is the precondition for successful connection of new expected power plant
units, including mostly wind, gas and coal ones. Outlays in the first half of the
period should account 6.98 bn PLN| in the second half then 6.28 bn PLN (PSE
2015a).

2.4 Transmission systems in the international con-

text

As it was already sketched, transmission systems are mutually interconnected
and it is thus not possible to conduct analysis only on the basis of a single

country. For this reason, we work with the whole region of Central Europe, in
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particular with Germany, the Czech Republic, Poland, Slovakia and Austria®®.
As can be seen in the next chapters, even other states are later incorporated

for the purposes of modeling.

2.4.1 Market design description and cooperation setup

Electricity market has one major feature in comparison to other commodity
markets. Under current level of technology, possibilities of storing electricity
are extremely limited as well as expensive. Hence, the condition of equality of
supply and demand at particular time and place has to be satisfied. Various
forms of electricity trading on long-term markets (forward), short-term markets
(day-ahead, intraday markets) and balancing markets are used as a tool to
assure the overall equilibrium. The results of this trading are called commercial
or scheduled flows.

Nonetheless, it is important to have in mind that the nature of physical
electricity flows does not have to, and actually mostly does not, correspond to
the planned commercial flows. In fact, the flows are subject to physical laws
which determine the flows based on current situation in the network.

The difference between the actual and scheduled flow of electricity is called
an unplanned flow. Practically, they describe the deviation of expectations
in form of traded contracts from the real flows of electricity. Maintenance of
unplanned flows is the main task in securing safe functioning of the system
with respect to the necessary condition of balancing demand and supply of
electricity in the grid.

The responsibility for maintenance of stability is most frequently in hands
of TSOs? who supervise their particular territory and monitor and manage
cross-border electricity flows by the means of trade as well as by the means of

physical controls, including congestion management*! (Kunz 2013).

39To remind, Germany is divided into four TSO control zones Tenne-T, 50 Hertz, Amprion
and TransnetBW. Austrian territory consists de facto from one control zone with the APG
as TSO (www.apg.at). Polish TSO is the company PSE (www.pse.pl) and Slovak one is the
company SEPS (www.seps.sk)

40In this thesis, all of TSOs in mentioned CE countries are legally obliged to assure such
stability (Source: web pages of TSOs)

41'Kunz (2013) gives following definition of congestion and congestion management: Con-
gestion represents the situation when technical constraints (e.g. line current, thermal stabil-
ity, voltage stability, etc.) or economic restrictions (e.g. priority feed-in, contract enforce-
ment, etc.) are violated and thus restrict the power transmission between regions. Therefore,
congestion management is aimed at obtaining a cost optimal power dispatch while accounting
for those constraints
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2.4.2 Cross-border problems and its precauses.

From the international perspective, electricity generation as well as transmis-
sion systems were historically maintained primarily on local, mostly national,
level by domestic highly-controllable production. Trading was limited and
cross-border transmission interactions took place only in case of emergency
grid balancing. Transmission grid and power system infrastructure reflected
this setup fully throughout Europe.

However, real efforts of integrating the European electricity market into one
area as well as promoting renewable energy led to a transition that came in 1996
and afterwards. In this time, three legislative packages and other legislature
were passed by the European parliament aiming to the transparency, regulation,
consumer protection and overall integration.

These packages, combined with the packages on promotion of renewable
policies, started to change the structure of European energetics completely
without having considered the side-effects of these policies on cross-border con-
gestion, volatility and unpredictability of VRES production resulting from such
setup.

These concerns are confirmed also by IEA publication on EU energy policy
which states following: ”The investment and large-scale additions of variable
non-dispatchable renewable energies in Central and South Europe have brought
about a number of new challenges for the wholesale electricity markets, the
merit-order dispatch, system operation and grid management, as electricity
trade flows across borders and at the distribution network level increased”
(IEA 2014). Simplified graphical interpretation of problems can be seen in the
figure 2.17 below.

Figure 2.17: Cause and effect diagram

. EU

market integration RES development

Unscheduled
cross-border
flows

Cross-border
bottlenecks

Source: Author

Eventually, to illustrate briefly the interconnections problems in more depth,
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we can have a look on interregional interconnection level. Even though 10%
interconnection level was set in 2002 and reassessed in 2014 to reach 15% by
2030, it is quite clear that with increasing amount of trade and growing pro-
duction from VRES, such target is insufficient. According to IEA, the capacity
should be increased by at least 40% (IEA 2014). Interconnector levels for the
year 2014 are shown in the table 2.5.

Table 2.5: Interconnection levels in CE

Country Austria Czech Republic Germany Poland Slovakia
Interconnection level (2014)  29% 17% 11% 2% 61%
Source: European Commission (2014b)

2.4.3 CE context

In the context of Central European region, all the aforementioned is represented

by following issues:
e Grid bottlenecks between southern and northern Germany

e Energiewende - Unprecedented growth of VRES production and nuclear

phaseout
e Market setup: German-Austiran electricity bidding zone

First two factors were thoroughly examined in previous sections from national
perspective; now we will pay attention to the last point, German-Austrian

bidding zone.

DE-AT Bidding zone

Generally, according to ENTSOE definition, ”Bidding zones are network areas
within which market participants can offer energy - in the day ahead, intraday
and longer-term market time frames - without having to acquire transmission
capacity to conclude their trades”*? (ENTSOE n.a.). Management of such zone
is then the responsibility of TSOs which have to assure that there is no conges-

tion inside the bidding zone and participants can trade without restrictions.

42Tn other words, this means that any subject is allowed to contract power without limi-
tations and hence disregarding the physical reality of the transmission network
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With respect to what was said about the shape of the infrastructure, bid-
ding zones are frequently set to correspond to national borders, even though
there are some exceptions within EU%. Setting up a bidding zone has sev-
eral advantages as well as disadvantages. Main benefits are the equality of
the price of wholesale electricity in the bidding zone, higher effectivity and
transparency of the market and mentioned implicit capacity allocation (ACER
2015). This is based on the fundamental assumption of sufficient transmission
capacity within bidding zone. The main drawback is that the internal flows
in a huge bidding zone cannot be controlled which implies that the flows also
have an impact on adjacent bidding areas (CEPS et al. 2012). Usual reaction
of responsible TSO’s is decline of cross-zonal tradable transmission capacity**.
As such, proper bidding zone delineation is critical for efficient functioning of
the system; otherwise, such zone can represent hindrances in the electricity
market.

Austria and Germany are one of the single-country bidding zone exemp-
tions and form a major bidding zone in Central Europe where the common
electricity prices and unrestricted trading are enjoyed. Nevertheless, this area
suffers severely from the drawbacks described above. Firstly, insufficient in-
ternal transmission capacities prevent the zone setup to deliver more efficient
structure than the original one. Secondly, significant negative overflows are
imposed on neighbouring countries.

Impact of changes in market setups are not assessed in this thesis. Nonethe-
less, the debate about this issue is still very lively and heated. This can be illus-
trated on the recent case from the end of September 2015. After several years
of common effort of Czech, Slovak, Polish and Hungarian TSOs, the Agency for
the Cooperation of Energy Regulators (ACER) took a position, though legally
unbinding, that the ”"exclusion of the common bidding zone of Germany and
Austria from the coordinated cross-border capacity calculation procedure in
the Central Eastern Europe (CEE) is not in line with EU rules and should be
terminated” as "the current regime at the German-Austrian border accounted
for congestion in neighboring transmission grids” CEPS (2015a).

This could be seen as a break-through in protracted negotiations. By many,

43For example, Sweden and Italy are divided into several zones whereas Germany and
Austria form one bidding zone (ACER 2015)

44We refer here to Net Transfer capacity (NTC) which is main determinant of free cross-
border commercial transmission capacities between particular zones. Exact definition gives
us: "Net Transfer Capacity is the maximum capacity for exchange of power between two
areas, compatible with security standards applicable in both areas and taking into account
the technical uncertainties on future network conditions” (PSE 2016)



2. Overview of power and transmission systems 33

it was expected that this document will become the basis for the actual zone
splitting. Nevertheless, in January 2016, Director of DG Energy in Euro-
pean Commission Mechthild Worsdorfer declared, that European Commision is
against the split of the biding zone as it considers this step to be ”meaningless”
(Kamparth 2016) and supported thus the stance of the Austrian regulator E-
control. With high degree of certainty, the final outcome will be reached rather

in a very long term, if at all.

Bottlenecks and loop flows

The international dimension of this problem is represented by the fact that,
in accordance with the physical nature of electricity, in the absence of par-
ticular capacities, electricity flows through free capacity in the grid elsewhere
which creates unscheduled flows affecting all neighbouring countries (predomi-
nantly the Czech Republic and Poland). In here, several problems in national
transmission grids are caused (Misik 2015). These unplanned power flows can
be split into external flows created by internal commercial transactions in one
country (traditionally called ”loop flows”) and external power flows created by
commercial transactions between two countries (traditionally called ”transit
flows”) (CEPS et al. 2012). In CEE context, especially loop flows exemplify
substantial threat to the stability of the grid as these flows over particular
interconnections are mostly unplanned and are thus unexpected by the TSO.
Unpredictable production from VRES, mainly wind parks, is main determi-
nant of these flows as this production is gusty both in amount and time (CEPS

2010a).
010a) Figure 2.18: Structure of flows in CE
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Chapter 3
Literature review

Modeling of power systems or electricity markets differs from the pure economic
or financial models to a large extent. The reasoning is hidden in the necessity
to account for the underlying technical characteristics and limitations of the
production assets specific to electricity (Ventosa et al. 2005).

In the last decades, modeling of the European electricity markets experi-
enced significant upswing both in quality and quantity of the models. This goes
in hand with EU policies taking gradual steps to demonopolize, decentralize
and unbundle the energy markets, especially the one for electricity (Leuthold
et al. 2012).

3.1 Modeling approaches

Each model abstracts from a reality to a certain degree as it uses stylized facts,
simplified figures, past trends as well as other assumptions. Herbst et al. (2012)

notes:

”Energy models represent a more or less simplified picture of the
real energy system and the real economy; at best they provide a
good approximation of today’s reality. Nevertheless, it would be
impossible to answer very specific questions on energy technologies
or economic implications without making some cut backs and ap-

proximations”

Trends in electricity market modeling are very various depending on the
target group, intended use, regional coverage, conceptual framework and many
other factors (Herbst et al. 2012). This implies that there is an abundance
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of model clusters with no unified division. Few approaches are presented here
based on the above mentioned criterions. Moreover, model employed in this

thesis is put into their context.

Optimization, Equilibrium and Simulation models

Based on the works of Smeers (1997), Kahn (1998), Hobbs (2001) and Day
et al. (2002), Ventosa et al. (2005) identifies three major trends in electricity
market modeling. He speaks about optimization models, equilibrium models
and simulation models.

Optimization models focus on the profit maximization of one particular
company. Nontheless, this approach is not frequently used any more as there
are basically no vertically-integrated compnaies in the liberalized electricity
markets. In these models, optimized profit can be derived on the basis of the
prices entering the model as an external parameter or via a function of the
demand supplied by the firm.

On the contrary, equilibrium models take into account overall market be-
havior and consider competition among all participants (Ventosa et al. 2005).
The market equilibrium is built on the concept of Nash equilibria, but depends
on strategies of the players. Two kinds of them are feasible - Cournot com-
petition, where firms compete in quantity, or the supply function equilibrium
approach (SFE),where the firms compete both in quantity and price (offer curve
strategies) (Ventosa et al. 2005).

Equilibrium models are generally very demanding to solve. When the degree
of complexity is to large, simulation models can be considered as an alternative.
Ventosa et al. (2005) describes simulation models as models which ”typically
represent each agent’s strategic decision dynamics by a set of sequential rules”.
In applicaion, models closely related to the equilibrim models or agent based

model are used.

Perfect vs. imperfect competition models

Unlike the previous approach, which deals mostly with the assumption of imper-
fect competition, Smeers (1997) took a look at the division of models according
to the type of competition in the market. It is clear that perfect competition
models are much more simple than the imperfect ones. The cost of simplifi-
cation is the vulnerability to critique as it is evident that perfect competition

assumptions do not reflect the real structure of the liberalized energy markets.
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Despite this fact, Smeers (1997) suggests that the perfect competition models
can be useful since they can handle large volumes of data. Moreover, imperfect
market characteristics can be introduced into these models as well by taking

quantitative restrictions or mark-ups into consideration(Smeers 1997).

Top-down vs. bottom-up models

Herbst et al. (2012) introduces another way of division of the models. He
examines the conceptual framework and introduces the scheme of top-down
and bottom-up models.

Top-down models tend to be developed and used by economists and public
authorities. They try to depict the reality on the national or regional level by
aggregating the energy systems. Herein, economic growth, price trends, de-
mographic development and macroeconomic approach to the consumer welfare
play an important role. Regulatory policies, emission trading schemes, envi-
ronmental taxes or surcharges (e.g. feed-in-taffifs) are mostly evaluated on the
basis of this models (Herbst et al. 2012). Input-Otput models (Catenazzi 2009),
econometric models (Cambridge Econometrics 2011, E3ME), computable gen-
eral equilibrium models (Bernard & Vielle 2008, GEMINI-E3) and system dy-
namics models (Krail & Schade 2010, ASTRA) are the best representatives of
this approach.

On the contrary, bottom-up models are constructed and employed in the
works of engineers, natural scientists, and energy supply companies as they are
aimed at technological focus and developmnent, system explicitness and busi-
ness oriented aproach. This enables them to deliver very detailed pictures of
energy demand and energy supply technologies, technology futures or invest-
ment, costs, and benefits of energy efficiency measures (Herbst et al. 2012). Par-
tial equilibrium (POLES, WEM, PRIMES), optimization (MARKAL, TIMES),
simulation (LEAP, BUENAS, PAMS) and multi-agent based models (Most &
Genoese 2009; Sensfuss et al. 2008) are the most frequent types.

In the last decade, efforts were made to merge the bottom-up and top-
down approach to one hybrid energy system models (Rivers & Jaccard 2005;
Hourcade et al. 2006; Béhringer & Rutherford 2008; Labriet et al. 2015)
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3.2 ELMOD model

In this thesis, the fully overtaken state-of-the art version of European ELMOD!
model was employed. As it will be seen in next paragraphs, the reason for
choosing this model is connected to a high degree of technical detail which
makes it the best choice when considering transmission system or load flow
analysis. This statement is then also supproted by existing similar research for
which this model was used (see section 3.3).

Several research institutions from Germany took part in bulding and en-
hancing this model. It was initialized at the Dresden University of technology
by Leuthold et al. (2008). Continuous improvement has been taking place at the
Chair of Energy Economics at TU Dresden, the Department for Energy, Trans-
portation, Environment (DIW Berlin), the Workgroup for Infrastructure Pol-
icy (TU Berlin) and the Energy Economics Department (University of Basel)
(Egerer 2016).

In the context of previous literature review, ELMOD model can be clas-
sified as a large scale non-linear bottom-up optimization model maximizing
general social welfare fucntion under production and transmission constraints
and under the assumption of perfect competition among market players. Also,
an independent system operator, optimizing the system variables for the en-
tire regional scope of the model, is assumed (Kunz 2013). As the bottom-up
approach indicates, one of the biggest assets of this model is the high degree
of technical introspection, in particular the control for physical peculiarities of
electricity as a commodity (Leuthold et al. 2012).

These peculiarities can be summarized by following. Hirth (2015) compares
electricity to a ”arechetype of commodity”. It is traded via standardized con-
tracts and it is perfectly homogeneous good at one time, space and lead-time
of delivery. However, physical laws imply significant constraints with economic
implications (Hirth 2015).

Firstly, large scale storage is impossible provided currently feasible technolo-
gies are taken into acount?. Thus, electricity supply and demand are required
to be in equilibrium in each time period to secure properly operating system.

Secondly, electricity is transported by transmission networks, a specific net-

work systems, which is subject to capacity and thermal restrictions, security

Tt is open source model which cas be accessed here: http://www.diw.de/elmod

2The only exception that allows for storing electricity in the form of water potential are
pumper storage power plants. These are subject to a special treatment as desrcibed in the
section 4.1
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constraints and physical laws (Kirchhoff and Ohm laws) determining the flows
on particular lines in the meshed network.

Whole model was coded and solved in GAMS (General Algebraic Modelling
System) software. Due to the non-linear nature of the model, GAMS CONOPT

module was crucial for solving it.

3.3 Applications of ELMOD and energy modeling
in CE

Since the publication of the model in Leuthold et al. (2008), many research
works applied the model. ELMOD is most frequently used for analysis of mar-
ket design (Neuhoff et al. (2013); Egerer et al. (2015)), influence of renewables
on transmission networks (Egerer et al. (2009); Schroeder et al. (2013)) includ-
ing grid and power plant investment decisions (Leuthold et al. (2009); Weigt
et al. (2010); Dietrich et al. (2010); Egerer et al. (2013)), uncertainty and
stochastic effects (Abrell & Kunz (2012)) and congestion management issues
(Kunz (2013); Kunz & Zerrahn (2015; 2016)).

If we focus on particular literature on energy modeling in the region of CE,
we can divide it in two groups. The first one is more extensive and examines
renewables most frequently on country level. The second one then concerns
transmission networks.

Among the above mentioned ELMOD literature focused primarily on Ger-
many, other German renewable-related studies include investigation of hydro
pump-storage power plant (Steffen 2012; Schill & Kemfert 2011), renewable
surplus and residual load (Schill 2014), discussion about the sustainability
of energy transition (Hinrichs-Rahlwes 2013), assessment of its successfulness
(Pegels & Liitkenhorst 2014) and costs (McKenna et al. 2014; Wand & Leuthold
2011) as well as discussions about market design etc. (Trepper et al. 2015;
Stotzer et al. 2015; de Menezes & Houllier 2015)

Renewables literature in the Czech Republic focused on meeting the EU
renewable targets (Sivek et al. 2012), quantifying the costs of renewables (Janda
et al. 2014; Prusa et al. 2013) and green investment schemes (Kardsek & Pavlica
2016). The papers of Recka & Sc¢asny (2016; 2013) go even beyond the scope
of renewables and model the Czech energy system as a whole.

Austrian research in renewables studied the questions linked to potential

of wind (Gass et al. 2013), efficiency of bioenergy technologies (Kalt & Kranzl
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2011) or assessment of national renewable energy scenarios (Madlener et al.
2007) and effect of renewables on prices in German-Austrian zone (Wiirzburg
et al. 2013).

Slovak researchers concentrated on photovoltaics development (Séﬂy et al.
2006) and interchangeability of nuclear and renewable power sources (Lofstedt
2008).

Polish academicians conducted freuquently research in the fields of the po-
tential of renewables in general (Paska & Surma 2014) as well as on individual-
technology level of bioenergy (Chodkowska-Miszczuk & Szymarniska 2013; Igliniski
et al. 2011) and wind (Brzeziniska-Rawa & Gozdziewicz-Biechoniska 2014). Like-
wise, local possibilities of renewable production (Juroszek & Kudelko 2016;
Iglinski et al. 2016; Piotrowska-Woroniak et al. 2015) and impact of EU goals
on electro-energetic mix (Gawlik et al. 2015) were investigated.

Literature on transmission networks and grid in CE is a bit less extensive.
Apart from mentioned ELMOD literature, we can find several other articles
which mostly deal with optimal grid extension or integration of renewables
into the grids. Nevertheless, these have a look on Germany (Winkler et al.
2016; Singh et al. 2015) or Europe as a whole (Fiirsch et al. 2013; Majchrzak
et al. 2013; Schaber et al. 2012a;b). Grid related literature in Poland examined
most often possibilities of phase-shifting transformers (Korab & Owczarek 2016;
Kocot et al. 2013).

The literature paying pure attention to the region of CE is very sparse. Few
examples are very recent articels from Singh et al. (2016), analysing the impact
of unplanned power flows on transmission networks, Eser et al. (2015), assessing
the impact of increased renewable penetration under network development and

Kunz & Zerrahn (2016) focusing on cross-border congestion management.



Chapter 4

The model

4.1 Model formulation

Various forms of ELMOD can be emloyed depending on the research question’s
objective. In this thesis, model specified in Leuthold et al. (2008) was used as
a basis with some further restrictions relating to the direct-current load flow
nature. These can be found in Leuthold et al. (2012) and Egerer et al. (2014).

4.1.1 Model notation

Sets and indices:

L

N

C

T

lelL
n,nn € N
n €N
ceC
teTl

Parameters:

G
Gfﬁlar
PSPovt
pSpin

max
Gct

set of all lines

set of all nodes

set of all conventional plants

set of all time periods

line within the network

nodes within the network

slack node(s) within the network
conventional power plant unit

time periods

Wind input at node n in time ¢

Solar input at node n in time ¢

Pump storage plant release at node n in time ¢
pump storage loading at node n in time ¢

maximal generation of generation unit ¢ in time ¢
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Py maximal available capacity limit of line [ in time ¢

H, network transfer matrix

B network susceptance matrix

A intercept coefficient at node n in time ¢

D, slope coefficient at node n in time ¢

M. marginal cost coefficient of power plant unit ¢ at node n
Variables:

w welfare function

Tt (Qnt) inverse demand function at node n in time ¢

Monet(Gnet) marginal cost of generation of plant ¢ at node n in time ¢
Gnet generation of generation unit ¢ at node n in time ¢

Gt demand at node n in time ¢

Upt net input to node n in time ¢

Dut power flow over line [ in time ¢

Onts Onnt, 0y flow angle at node n in time ¢

4.1.2 Model form

77;%% ; ; < ntQnt + Dntqnt Z gnctMnc> (41)

s.t.

> Gnet + G+ G + PSP — PSP 4> Oyt Bun — g =0 Vn, t

nn

(4.2
gnct S ngax vn; Cyt (43)
pue =Y Hpbp VIt (4.4)
lpu|l < Py VIt (4.5)

0, =0 Vn,t (4.6)
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4.2 Model description

4.2.1 Welfare function

The objective function in the ELMOD model is a social welfare function which
is maximized after taking into account the technical and physical peculiarities
connected to electricity. In the model, these include energy balance (4.2),
generation constraint (4.3) and line flow restrictions (4.4)-(4.6).

The general form of the ELMOD social welfare function was formulated in
Leuthold et al. (2008). It has the form of:

w(g, q) =Y ( /0 " Tt (Gt ) — Y gmtmnct(gnct)> (4.7)

n,t

Welfare is thus obtained by subtracting the generation cost! form the area
below the demand curve. In other words, we are left with sum of the producer

and consumer surpluses. Graphical illustration is provided in the figure 4.1.

Figure 4.1: Welfare in the electricity market

A
price

demand function

supply function
(ment order)

g gt “demand

Source: Leuthold et al. (2008)

General inverse demand function of the form 7, (g,:) and general supply
function of the form g,eMue(gnet) are used in (4.7). Nevertheles, linear func-
tions are assumed most frequently in ELMOD. Such simplification is also em-

ployed in this thesis.

!These cost are composed of the amount of generation and marginal cost of each unit’s
generation
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Simirarly to the application of Leuthold et al. (2012), the linear inverse

demand function has the form of:

7T'mt<Qm‘/) = Ant + Dntht (48)

where A,; is nonnegative intercept and D,; is negative slope coefficient which
are used to estimate the demand function. Exact derivation is given in the
Appendix A.

Supply function is also linearized. The marginal cost function 7. (gnet) is
replaced by the coefficient M, determining the time-invariant marginal cost of
generation for each individual power plant unit ¢ at node n based on the model
data?.

If we want to derive the welfare at node n and time ¢ using linear functions,
we need to calculate the area below the demand function and below the supply
function and subtract them. Area below inverse linear demand function (4.8)

is determined followingly:

1
/(Ant + Dntht)dQnt = Antht + §Dntq721t (49>

The right-hand side leaves us exactly with the term that is used in the first
part of the objective function (4.1). Area below the supply fuction is the sum

of generation costs of all power plant units at node n and time ¢:

ZgnctMnc (410)

If (4.9) and (4.10) are subtracted and the result is summed up over all nodes
and all time periods, objective function (4.1) is obtained. It is important to
say that this function is concave. This follows form the fact that coefficients
A, and M, at linear terms are positive for all n and ¢ and the coefficient D,

at quadratic term is negative for all n and t.

4.2.2 Energy balance

As stated earlier, ELMOD takes into account electricity specific restrictions.
One of these is the criterion of balanced supply and demand which is captured

by the equation (4.2). The equation includes all electricity inputs and sets

2The calculation of M,,. for particular power plant consists of definition of power plant
technology, fuel price, fuel carbon content,carbon price and power plant efficiency. Exact
formula is given in the Appendix A
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them equal to the withdrawals from grid and net inputs. Electricity inputs in-

clude total generation from conventional power plants ) g, wind generation

solar

selar and storage power plant release PSP%*3. Grid

Guind solar generation G
withdrawals are repsented by nodal demand ¢,; and consumption of pump-
storage power plants for pumping PSP%. The remaining term, net input
> i Onnt Bunn labeled by v, in the model notation, is important ELMOD -
specific feature and defines whether electricity is injected or withdrawn from
the grid at respective node (Leuthold et al. 2008). The nature of net input
is closely tied to physical power flows constraints and constitutes actually a

system power imbalance (Expdsito et al. 2004).

4.2.3 Network constraints and flow model

Remaining equations from (4.3) to (4.6) impose other physical - based restric-
tions and define how power flows are modeled.

First limitation in the form of inequality (4.3) states that the electricity
production from power plant is bounded by the installed capacity of given pro-
duction unit and cannot exceed this value®. Inequality (4.5) take into account
the capacity limits of individual transmission lines and restrict the modeled
flow to respect these upper and lower values respectively. Moreover, the pa-
rameter on maximum limit inherently incorporates the system security criterion
by allowing for some reliability margin at each line. Closer details on security
assumptions can be found in the section 4.3.2.

Equations (4.4) and (4.6) are central to the model. Equation (4.4) models
the flow over particular line in a given time and the equation (4.6) sets the phase
angle for an arbitrary slack node to zero to ensure the uniqueness of solutions®
(Egerer et al. 2014). The term v, representing the net input variable cannot
be also ommited. Due to the importance of these three features, deeper insight

and more extensive commentary will be provided.

3In this model, wind, solar and PSP release or loading are treated as external parametres

4Tt implicitly follows from the definition that the production cannot be negative

5The terms net input and slack node are explained in the part ”Net input & Slack node”
of this section. Definition of voltage angle is following: ”When capacitors or inductors are
involved in an AC circuit, the current and voltage do not peak at the same time. The
fraction of a period difference between the peaks expressed in degrees is said to be the phase
difference” (Georgia State University 2016)
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Power flow

Static power analysis has been subject to many research questions and, as
such, power flow modeling is very established discipline in the field of electrical
engineering.

Formulation of electricity model requires four basic variables at each system
node 7 which include active power 6 injections P;, reactive power” injections Q;,
voltage angle 6; and voltage magnitude U;. Such setup is known as AC load
flow model.

For model solution, two variables must be known in advance at each node.
This formulation results than in non-linear system of equations requiring it-
erative solution methods which are generally computationaly very demanding
(Seifi & Sepasian 2011).

With regard to respective physical rules and laws, active and reactive power
flows on particular lines can be computated based on series conductance® Gy,
series susceptance’'* Bji, voltage angle differences 65 and voltage magnitudes
U; and Uy. Detailed general derivation can be found in Seifi & Sepasian (2011)
and derivation applied in this thesis can be found in Stigler & Todem (2005).
The resulting equations for active and reactive powers over line between the

nodes 7 and k are following:
Py = G|Uj|* — G| Uj||Us| cos 0 — Bjy,|Uj||Us| sin 0, (4.11)

| -
Qix = —Bj|U;|* = Bji|U;||Uk| cos 05 — G 1| U;| | Ug| sin 05, — §Bj1?|Uj|2 (4.12)

As a result of immense computational difficulty, simplified models are very
frequently used in economic applications. Very common simplification of AC
load flow is DC load flow model (DCLF) which allows for linearization at the

cost of some restrictive assumptions causing lower level of accuracy'!.

6 Active power is the power drawn by the electrical resistance of a system doing useful
work

"Reactive power is the power stored in and discharged by the inductive motors, trans-
formers or solenoids

8Conductance is the real part of admittance which measures the ease with which an
electric current passes through a component

9Susceptance is the imaginary part of admittance

10Based on Stigler & Todem (2005), conductance and susceptance can be calculated using
these formulas G, = szkj’iil;ik and Bjj, = T?:f; > where 7, stands for series resistance (the
difficulty to pass electric current through a conductor) and =z, for series reactance (the
measure of opposition to the change in the current in AC circuit). Both these parametres
enter the model as fixed values for respective voltage levels

HOverbye et al. (2004) discusses the actual differences between the AC and DC flow




4. The model 46

ELMOD model follows the work of Schweppe et al. (1988) and Stigler &
Todem (2005) where following assumptions are made to simplify the flow cal-

culations:
e Reactive power (i.e. equation 4.12) flows are neglected
e Transmission lines losses are neglected
e Angle differences are assumed to be small
e Voltages are standardized to per unit levels'?

Schweppe et al. (1988) shows how the assumption allow for mathematical sim-
plification of equation (4.11). As a result of the procedure, DC load flow deals
only with two variables - voltage angle and active power injections. The formula

for power flow is thus reduced to

Last steps in obtaining desired result in form of particular line flow incorporate
the identification of nodes n,nn and mapping to the lines. For this purpose,
Leuthold et al. (2012) uses a special matrix, incidence matrix Ij,, which is

defined followingly:

1 ifn=y
0 else

With the help of series line susceptance By,, final line power flow (4.4) can be

obtained:
Hln - BlnIln (414)

b = Z Hlnent

Net input & Slack node

Referring to the previous text on net input, tehcnical description is added. Net

input variable is determined by network susceptance matrix and voltage angles

applications. A conlusion is met that the loss of accuracy is very small and that DC results
match pretty well AC load flow solutions provided the assumption of such simplification are
met

12Nice discussion of applicability of these assumptions can be found in Purchala et al.
(2005)
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Unt = O o Brnnnbnng. Mathematical derivation of the first parameter, the
susceptance matrix B,, ,,, is based strongly on above mentioned flow definitions

(Leuthold et al. 2012).
Bn,nn = Z IlnHln (415)
l

This paragraph should shed light on the last equation of the model, equation
(4.6). The equation sets the volatage angle of an arbitrary node, called slack
node, to be zero which is important because uniqueness of solution of the system
is thus guaranteed. Due to the setting of the voltage angle of one variable, all
other angle values are relative to this specific one.

Slack node is closely tied to the net input, certain representative of system
power imbalance. Slack node plays an important role here as real power gen-
eration from this particular node can be rescheduled to supply the difference
between total system load plus losses and the sum of active powers specified
at generation buses (Expdsito et al. 2004). System-wide balance is secured as
the individial net inputs sum up to zero in the whole system (Leuthold et al.
2012).

The decision about the slack bus is not important and can be completely
random in models with enough buses. Nevertheless, Expdsito et al. (2004)
suggests to chose as a slack node the largest generator in the network. Such

approach was also chosen in this application.

4.3 Data description

4.3.1 Datasets and data issues

Generally, gathering the data for the network model was not easy as no data
with sufficient depth are publicly available from majority of official authorities
in continental Europe due to security or economic sensitivity reasons (Egerer
et al. 2014). In the region of CE and neighbouring countries, only German
and Austrian TSOs provide publicly available information about the technical
parameters of the transmission grid.

Regarding other countries, the only possible data source was to focus on the
European network of transmission system operators (ENTSOE) which aggre-
gates some information about network and electricity data from national oper-
ators. Nevertheless, in the current dataset provided by ENTSOE study model
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(STUM) (ENTSOE 2016b), only coded, incomprehensible and non-replicable
information about the grid was found as a result of data confidentiality.

Moving to the conventional thermal sources and hydro power plants, data
accessibility is worse than in the previous case. Form the region in question,
only German network agency, Bundesnetzagentur, publishes the complete list
of operating power stations.

The only non-problematic dataset with enough information relates to the
load and production data which are publicly disclosed under the ”Electric-
ity market transparency” scheme, the result of EU Regulation no 543/2013'3.
ENTSOE Transparency Platform aggregates all data.

Development of many models and datasets by researchers was the conse-
quence of missing appropriate data. The community at the German Institute
for Economic Research (DIW) did exactly this and published data and data
documentation for electricity generation, load data, the high-voltage trans-
mission infrastructure and price data in the paper ”Electricity Sector Data
for Policy-Relevant Modelling - Data Documentation and Applications to the
German and European Electricity Markets” written by Egerer et al. (2014).

This thesis emloyed mentioned dataset but added several adjustments. Due
to the bad accessibility of data, transmission network system, power plant units
and their technical charasterisics were completely overtaken and resemble thus
the state of the year 2012. Similarly to the application of Kunz & Zerrahn
(2016), the rest of the dataset related to electricity was updated to reflect more
current period, in our particular case the year 2015'. Thus, data for load,
solar, wind, pump-storage plant generation and pump-storage plant pumping
were obtained from the ENTSOE Transparency platfrom (ENTSOE 2016a) or
from the pages of individual TSOs in case of unavailability in the Transparency
platform. Data for the prices of electricity to calculate demand were obtained
from the Quarterly Report on European Electricity Markets (European Com-
mission, DG Energy 2016¢). Data on power plant fuels were collected from
several resources as shown in the table 4.1. Prices of C'Oy allowances were
retreived from the database of European Energy Exchange (EEX) in Leipzig.
Lastly, data on cross-country price differentions in gas and oil were collected

from the Quarterly reports on European gas markets (European Commission,

Bhttp:/ /eur-lex.europa.eu/legal-content /EN/TX T /?uri=CELEX %3A32013R0543

14This is an importnant contribution of the work. When working with the renewables
data, it is very important to have the most updated generation data as these vary accross
years due to a significant construction activity in countries of interest, especially Germany
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DG Energy 2016d) and dabase of EU Crude Oil Imports and supply cost (Eu-
ropean Commission, DG Energy 2016b).

4.3.2 Grid

The underlying grid data consist of nodes (transformer stations) which are
connected by transmission lines (individual circuits). In several cases, auxiliary
nodes are added on the intersection of lines. (Egerer et al. 2014). The dataset
consists of 593 nodes, 10 country-specific nodes and 981 lines.

Each transmission line is characterized by several parameters necessary for
conduction of a DC load flow model - number of circuits, length, resistance,
reactance, voltage level and thermal limit. Details on the derivation as well as
the assumptions can be found in chapter 4.2.3.

There are two levels of detail in the data. This thesis focuses primarily on
the region of Germany, Czech Republic, Slovak Republic, Poland and Austria'®
and, as such, attempts to reflect the transmission system of these countries to
a most possible level of detail. In particular, this means that structural nature
of the network is modeled by taking into account actual lines and substations
which are operated by the TSOs. Exact form of the transmission system can
be found in Egerer et al. (2014, p.56). The second level is more aggregate.
Following the idea of Leuthold (2009), adjacent countries'S are represented by
country-specific single nodes which are interconnected with the CE region as
well as between each other. By the approach, the number and properties of
interconnectors between the countries are unaffected.

These are important feature of the model for two reasons. First of all, it
distinguishes the thesis from most of the research works which focuse primarily
on Germany and model only German network in such a detail. After that, the
aggregation of lines applied to the neighbouring countries of the region prevents
the occurence of severe bias in resulting flows as a consequence of absent transit
and loop flows of electricity between CE and adjacent areas. The transit can
be illustrated on Italy, the biggest importer of electricity in Europe. Italy has
terrestrial interconnections to France, Switzerland, Austria and Slovenia which

supply or transport all the imported electricity'”. If the connections to Italy

15To be referred to as ”CE region”

16These countries consider all states which have interconnections to the CE region. The
list is following: Netherlands, Luxembourg, France, Switzerland, Italy, Slovenia, Hungary,
Denmark, Sweden

1743 716 GWh in 2014
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were ignored, transport would not take place in the networks which would bias
the exchanges on all border profiles of the Italian neighbours!®

The final dimension of the grid data regards security which the TSO has to
take into account. In real life, this is captured by the "N-1" security criterion
which is a basic criterion of power system stability. It requires that the system is
able to operate and supply electricity provided a sudden outage of one system
element occurs (Neuhoff et al. 2005). In the model, this security constraint
is introduced by a 20% reliability margin in the thermal limit of each line

(Leuthold et al. 2008, p.13).

4.3.3 Generation

Based on the approach in Egerer et al. (2014), generation capacities are divided

between conventional and renewable sources which are treated accordingly.

Conventional

For conventional generation, individual units or power plants are considered

separately 1°.

Each unit was allocated into one of 20 technological clusters
according to fuel that is being consumed and technology that is utilized by the
generation unit. Exact overview and definition can be found in Egerer et al.
(2014, p.57).

In the CE region, 607 generation units are present. These are assigned to
specific nodes by the method of shortest distance. In the remaining single node
countries, all generation units were summed up over the production technology
and allocated to that single node. Since no lists of generation units are publicly
available?, all power plants data were overtaken from the study of Egerer et al.
(2014) whose source was the paid database of World Electric Power Plant
database (WEPP) by Platts. The cost of this approach is that the generation
dataset reflects the state in the year 2012. Thus an assumption about time-
invariant development of generation capacities had to be made for the years

2013 to 20152,

Actual generation from individual plants is subject to model optimization

18In this sample example, primarily flows in Austrian and Swiss grids would be affected
as they transport electricity to Italy from big exporters like Germany or France

19Generation units above 10 MW of installed capacity are considered only

20Except for Germany which was mentioned earlier

21The only exeption is the German nuclear phase-out which was fully reflected in the
dataset for the particular period
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after taking technical parameters of the plants into account. Insight is given in
the section 4.3.4.

Renewables

Unlike in the previous case, non dispatchable renewables, by which we primar-
ily mean solar and wind plants, could not have been accounted for individually
due to high degree of decentralization and small installed capacity of individ-
ual units. As such, regional aggregation with respect to individual nodes was
conducted??. As a result, the weights of individual nodes on the total solar
and wind generation were obtained. Detailed description of the method can be
found in Egerer et al. (2014, pp.62,64) and Leuthold (2009).

The renewable generation enters the model as a parameter and for this
reason, aggregate data on 2015 hourly generation for the country level were

23

obtained from ENTSOE transparency platform>. These were then allocated

to individual nodes in accordance with the aforementioned approach.

4.3.4 Time dependent data

In this section, parameters for the conventional power plants will be introduced
so that a full picture behind the generation can be constructed. These parame-

ters include fuel cost, generation efficiency and availability of production units.

Fuel cost

In order to obtain model outcome with the specific production from the different
generation technologies, fuel and emission prices have to be introduced as these
represent the short-term variable costs of producing one megawatt hour of
electricity. This applies to conventional power plants whereas solar, wind and
hydro power plants are considered at the zero production cost. By both types,
operation and maintenance costs as well as unit commitment costs are not
considered (Egerer et al. 2014).

Input prices for particular inputs are given in the table 4.1 below together
with the respective data sources. All prices were updated to 2015 values except

the price for coal where only 2014 values were available.

22Country-specific nodes were allocated 100% of renewable capacity of the whole country
23In case of Italy, no data were available ant hus the site of TERNA, Italian TSO, was
consulted
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Table 4.1: Fuel prices

Fuel Price Source

[EUR/MWhy,], [EUR/t(CO,)]

Uran 3 Assumption of Egerer et al. (2014)
Lignite 3,48 Own calculation

Hard Coal 6,96 BP: Northwestern Europe coal price 2014
Gas 2228 EC: Quarterly reports on European gas markets
Oil 28,42 Bloomberg: Brent oil price

Biomass 7,2 Assumption of Egerer et al. (2014)

Hydro 0

Wind 0

Sun 0

Waste 7,2 Assumption of Egerer et al.

Carbon 7,59 EEX: Median CO2 EUA settlement prices

Prices of natural gas and oil do differ across European countries as a result
of different location, different transportation costs and various import sources.
A country-level factor for each state was thus computed and the prices were
multiplied accordingly. Factor calculation was based on publicly available data

provided by European Commission?*.

Generation efficiency and availability of generation capacity

These technical features should capture the influence of specific technologies
and should thus complete the information necessary for generation calculation.

Power plants work with efficiency that is significantly lower than the fully
optimal output of 100%. Despite the fact that these numbers are frequently
very low, some technological progress took place during 20** and 21°* centuries.
Table 4.2 shows the technology-specific efficiencies with respect to time and
technlogy.

Availability parameter aims to account for share of non-operation time in
generation capacities due to maintenance, outages, etc. Installed capacity of
the generation units is multiplied by corresponding percentage which can be
found in the table 4.3%.

24

Sources: Quarterly reports on European gas markets
(https://ec.europa.eu/energy/en/statistics/market-analysis); EU Crude Oil Imports
and supply cost (https://ec.europa.eu/energy/en/statistics/eu-crude-oil-imports)

25Tt is important to note, that availability of wind, solar and pump storage power plants
is set to one as corresponding data enter the model as external paramters
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Table 4.2: Efficiency of conventional generation technologies (in %)

1950 1960 1970 1980 1990 2000 2010

Nuclear 33 33 33 33 33 33 33
Lignite 29 32 35 38 41 44 47
Coal 29,6 32,8 359 39,1 423 45,5 48,7
CCGT and CCOT 20 26,7 33,3 40 46,7 53,3 60
Gas Steam and Oil Steam 30,6 33,8 36,9 40,1 43,3 46,5 49,7
OCGT and OCOT 247 273 299 32,5 351 377 403
Source (Egerer et al. 2014, p.70)

Table 4.3: Availability of conventional generation technologies

Type Nuclear Lignite Coal CCGT, OCGT, Gas Steam, Reservoir, Hydro
CCOT OCOT  Oil Steam RoR

Availability 0,84 0,9 0,87 0,91 0,9 0,89 0,62 0,32

Source: Egerer et al. (2014, p.70) and Schroder et al. (2013)

4.3.5 Load and electricity price

Exact definition of load is given by ENTSOE, which defines it as follows: ”Total
load includes electricity generation plus imports less exports and power used for
electricity storage” (ENTSOE 2015). Due to the necessary balancing in the grid
and due to the fact that electricity storage is accounted for separately, these
data correspond basically to the amount of electricity demanded. ENTSOE
database was the source of hourly data for all included countries for the year
2015.

Primary utilization of the data lied in the necessity to have the counterpart
to the generation on nodal basis in CE region and national basis in the rest
of countries. Nevertheless, the load values are available on national level only
which is not satisfactory for the purposes of the model. Egerer et al. (2014)
suggests an approach how to estimate the weights of individual nodes. The
key parameters are data on GDP and population which serve as proxies for
industrial and residential demand respectively?®. All data are taken on the
NUTS 3 level, for which the data are available in all cases (Egerer et al. 2014).
Exact allocation procedure is described in detail in Egerer et al. (2014) and
Leuthold et al. (2012).

26GDP assumes 60% weight whereas population assumes 40%
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Secondary utilization of the load data occurs in the optimization problem
where the welfare function is maximized. At each node reference demand, refer-
ence price and elasticity are estimated in order to identify demand via a linear
demand function (Leuthold et al. 2012). In here, as Leuthold suggests, the
hourly load is assigned to the nodes according to the node’s share described in
the previous two paragraphs. This, subsequently, yields a reference demand per
node. Reference price on country level was obtained from the European com-
mission’s Quarterly reports on European energy markets for the year 2015%".

Table 4.4 shows the prices for relevant countries.

Table 4.4: Electricity reference prices, [EUR/MWHh]

Country AT CH Cz DE DK FR HU IT LU NL PL ST SK SE

Price 32,33 36,80 32,53 32,08 25,63 38,75 41,45 53,80 32,08 41,73 41,48 41,93 33,50 18,51

Source:  European Commission, DG Energy (2016¢)

The last necessary parameter, demand elasticity, is based on the findings of
Green (2007) and is taken as -0.25. Finally, linear demand function is estimated

based on these three inputs (see section A).

4.4 Simplification of the full year model

Next-to-last section of this chapter explains the issues that occured during
model solution. The original intention was to model full scope of the year
2015, i.e. 8760 hours in the year. Unfortunately, it became clear that this ap-
proach had been unfeasible due to hardware limitations resulting from complex
structure of the model.

For this reason, alternative approach was applied. With respect to the fact
that mostly the extreme values of either load or production are of greatest con-
cern for system stability, representative weeks with the different combinations
of extreme values of RES production were used and investigated in detail?®. As
the full year picture is not accessible, it is believed that this approach is the

best scond-best option.

2"The reference price was not subject to nodal allocation. One price for given country is
considered

28The weeks according to the RES production instead of the load were chosen as this
reflects better the nature of the scenarios
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Selected weeks

Similarly to the application of Schroeder et al. (2013), four weeks?® with differ-
ent values of wind and solar production were chosen. In particular, we speek
about two base weeks, week 4 and week 14, where the cummulative production
from wind and sun was lowest or highest in CE, respectively. In addition to
this, also the weeks 27 and 49 are considered which should represent the op-
posite extremes in production. Thus, week 27 mirrors the situation provided
there is a high production from sun and low production from wind and week
49 reflects the opposite.

In the figures 4.2-4.5, the aggregate load-production profiles for CE coun-
tries of mentioned weeks are shown on the real data for 2015. Load, residual
load®®, sun and wind productions are depicted during the respective hours of

the year.

4.5 Border profiles

Due to the fact that there are 30 interconnectors between the states of Central
Europe, 29 interconnectors between the German TSOs, another 39 intercon-
nectors between the Central Europe and adjacent states and hundred of lines
within the particular countries, commentary on each individual line would not
contribute to a lucid and clear interpretation of reuslts. Hence, resulting mod-

731 Full access to

eled flows are reported and interpreted on ”border profiles
unaggregated results is then provided in the appendix A and supplemental
materials.

The term ”border profile” itself represents the aggregation of all transmis-
sion lines that interconnect two neighbouring areas after the model results for
individual lines were obtained. There are several kinds of border profiles in this
thesis.

Firstly, we include ordinary border profiles between states. The backing idea
is that such lines are natural bottlenecks in the contemporary grids (see section
2.2.3) and, therefore, are of greatest interest and importance when interpreting

the inlfluence of VRES on transmission networks. Accompanying reason is then

29Please note, that we refer here to English-type weeks, i.e. the week starts by Sunday

30Residual load is a concept that points to show how much of the remaining load has to be
covered by the conventional sources in operation. It is calculated using this simple formula.
Residual load = Load - Sun generation - Wind generation

31This is commonly used approach as can be seen in Egerer et al. (2014) for example.
Moreover, reasons why such simplification is feasible are given below
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Figure 4.2: Week 4 profile
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Figure 4.3: Week 14 profile
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that borders between countries are, as a rule, also borders between individual
TSOs and it is desirable to see exchanges and balances between them as these
are commonly reported in public databases.

Moving to the border profiles between TSOs, some of such profiles do not
necessarily coincide with state borders. This is case of Germany, where four
separate TSOs operate in total. The motive for involvement of these profiles
slightly differs from the previous one. Profiles between intranational TSOs do
not inevitably embody the grid bottlenecks but rather allow for interesting
observations of flows between TSO’s areas resulting from the distribution of
VRES production and consumption centres in Germany (see section 2.2.3).

Last type includes special and, to a large extent, artificial border profile be-
tween northern and southern Germany which was employed for the examination
of the electricity exchanges with respect to the bottlenecks within Germany as
described in the sections 2.2.3 and 2.4.3. This border profile was created sim-
ilarly to the study of Egerer et al. (2015). Graphical representation can be
found in the figure 4.6.

Figure 4.6: Division of Germany in northern and southern zones

Source: Wikimedia Commons (n.a.)



Chapter 5
Scenarios and Results

In the chapter 2.4.3, three key issues relating to the transmission networks in

Central Europe were identified. To summarize, we refer to:

i) Grid bottlenecks between southern and northern Germany
ii) German Energiewende policy

iii) Market setup (represented by German - Austrian bidding zone)

In the analysis conducted within the scope of this thesis, attention was paid
primarily to issues i) and ii). This is implied by the fact that ELMOD model,
as employed in this thesis, is not able to reflect market design and assess the
impacts of possible design changes'. Nevertheless, issue iii) was thoroughly

discussed in the section 2.4.3.

5.1 Scenarios

To measure exactly the impact of i) and ii) on the transmission grid, electricity
flows on the individual lines within the network were obtained. Afterwards,

they were compared in the context of three scenarios.

Base scenario

First scenario, called base, took the raw data as specified earlier in chapter 4.3.
It basically aims to model the current situation in the power sector and is used

as a reference scenario in the analysis.

'In a few research works, other market designs than perfect competition were also ap-
plied. Neverthless, this requires complete reformulation of the model and approach. For
example, Leuthold (2009) uses game theoretic modeling allowing for capturing the factors
like cooperation or unwillingness to cooperate among TSOs
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Full scenario

Next scenario, called full, is the scenario for assesing full range of the impacts
of Energiewende policy i) and ii) in CE context. It was derived from the base
scenario data by taking into account the aims of German energy policy for
the year 20252. In practice, this means that parametres reflecting the VRES
production were multiplied by coefficients (table 5.1) and nuclear power plants
were phased-out. Everything else in Germany as well as remaining countries,
including grids, reflect the state of 2015 or other years according to specifica-
tions stated in section 4.3. From the nature of construction it thus follows that
the results must be read in the context of worst possible outcome which means
what would be the impact of flows on the grid if nothing was done in network
development.

Derivation of mentioned multiplicative coefficients for VRES production
was based on respective Energiewende milestones as specified in the table 2.1.

In the first place, all relevant electricity-related Energiewende goals are
defined as a percentage of electricity consumption as compared to the year
2008. According to AGEB (2015), 618.2 TWh of electricity was consumed in
Germany in 2008. Energiewende goals require the electricity consumption to
be reduced by 10% until 2020 and by 25% until 2050 (BMW1i 2015b)?. Linear
approximation leads us to 12.5% in 2025 which accounts for 541 TWh. This
comprises 90.61% of the 2015 consumption.

After having calculated the reference value of consumption, computation of
corresponding shares of solar and wind electricity generation can take place. It
is based on the scenario 72025 A” from the publication ” Netzentwicklungsplan”
(Feix et al. 2015) where installed capacities are projected. Actual generation
was obtained by multiplying these figures by utilization factors* of indivudial
power plant types that were extracted from AGEB data. This approach yields
the renewable/consumption ratio of 45.91%, pretty close to 42.5% which is the

2Particular year 2025 was chosen as the reference year due to three reasons. Firstly, it
is commonly mentioned in energy projections and some underlying data can be extracted
from documentation. Secondly, the growth of renewables is significant enough to allow for
monitoring the changes and thirdly, all nuclear power plants are supposed to be out of
operation

3 Actually, the reduction of consumption by 25 % should be due by 2030. Nevertheless,
after having look on the development of consumption in recent years, it is clear that this goal
seems very ambitious. Consequently, more conservative prediction was taken into account
having this aim at the end of the period

4Utilization factors are represented by ’full-load hours’ - a concept saying how many hours
of the years the power plant has to operate at 100 % load to produce the electricity actually
generated in given year
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result of linear approximation for year 2025 using BMWi scenarios (BMWi

2015b). Table 5.1 summarizes the calculations concisely.

Table 5.1: Parameters of full scenario model

Installed capacity Development Installed capacity Full load Generation Generation  Generation
2013 (MW) coefficient 2025 (MW) hours 2025 (TWh) 2015 TWh coefficient
TYPE (1) 2 3) 4) (5) (6) @)
Solar 36340,00 1,490 54159,61 969,77 52,52 38,50 1,364
Wind onshore 33310,00 1,568 52231,66 1900,46 99,26
Wind offshore 620,00 14,355 8900,00 3118,28 27,75
Wind 33930,00 61131,66 127,02 86,00 1,477
Biomass 8380,00 1,032 8650,32 5000,00 43,25 44,30
Water 5590,00 1,000 5590,00 3494,62 19,53 19,50
Other 6,00 5,70
Own,

Source: Feix et al. (2015) Feix et al. (2015) (1)*(2) data BMWi (2015b) (3)%(4) AGEB (2015) (5)/(6)

Values given in the column ” Generation coefficients” are then that ones, by

which original data for wind and solar production were multiplied.

Res scenario

Last scenario, called res, is some kind of artificial scenario. It is described
by the same charasteristics as the previous one, except the fact that German
nuclear power plants are considered to be still in operation even after 2022.
The interpretation of this scenario is following: it was included to inspect one
particular part of Energiewende policy - the nuclear phase-out or, from the
other point of view, isolated impact of renewables on transmission networks

without the nuclear phase-out.

5.2 Results

The interpretation of the outcomes of the model is presented in the following
manner. First, the results from the base model and their fit to the actual data
is discussed. We proceed by having look at res and full scenarios and the
development of flows on the lines. Impacts on the border profiles defined in
4.5 is shown by the visualization of imports, exports, balances and the amount
of total transmitted electricity. Total transmission is defined as a sum of ab-
solute values of imports and exports whereas the balance is the difference of
absolute values of imports and exports®. Last part of the analysis referes to a

summary statistics for individual international cross-border lines. Above all,

5The main difference between balance and transmission is following. Balances measure
the electricity after the netting, i.e. electricity, that enters the grid of a respective TSO.
Unlike this, transmission is reported to measure the "load” on the particular border profiles
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attention is paid to average load, flow magnitudes, volatily and occurences of
extraordinaroy load.

For the sake of brevity, detailed commentary is made for the weeks 14 and 4
where peak and bottom of cummulative VRES production occured,respectively.
For the weeks 27 and 49, only the most important features of the scenarios are
stressed as the trends and patterns have very similar meanings.

Eventaully, only the most important figures are given in the core of the the-
sis, remaining ones can be found in the appendix A (p. III-XV). Unaggredated

data are accesible in supplemental materials.

5.2.1 Results for low VRES production - week 4

As figure 4.2 indicates, week 4 corresponds to the lowest level of production
from wind and solar power plants. The general effect of low-pitched volatile
production is the low international balance (fig. A.1, fig A.3 ) as well as total
transmission of electricity (fig. 5.3 - 5.2 ).

When the base scenario results for exchange balance are compared to the
actually observed ones, we can see that the direction of exchanges of electric-
ity matches the actual ones (fig.2.18), except the case of Czech-Slovak and
Polish-German border. Despite this fact, week 4 results exhibit quite a poor
performance in predictions of amounts. Table 5.1, line 1, summarizes the per-
centual deviation from real balances. The higher the value in absolute terms,
the worse the fit is. The opposite flow directions in the cases of Czech-Slovak
and Polish-German borders are represented by the values lower than -100%.

Reversed flow on Czech-Slovak border is structural in this model. In reality,
electricity flows from the Czech Republic through Slovakia to Hungary and
further to Balkan countries. Nevertheless, Hungary is modeled as one node
and Balkan countries are neglected in this model. The result is that electricity
thus flows in reversed order - from Hungary to Slovakia and from Slovakia to
the Czech republic. This could be solved e.g. by modeling Balkan countries as
one additional importing node.

Presumably, the reason for the poor performance in this particular week
is linked to the single TSO’s area nature of the model. As low share of zero-
marginal cost renewable production enters the model, non-zero cost conven-

tional production has to take place to meet the demand. Because of the single

i.e. how electricity flows in both directions and how it actually loads the grid when the
electricity is exchanged
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TSO in the model, all area is optimzed at once. Therefore, conventional power
plants produce at the most possible local level and the necessity for cross-zonal
transport of electricity is limited ©.

Moving to the comparison of individual scenarios, table 5.1 gives a sum-
mary of the percentual changes in trasmission and absolute value of changes of
balances and transmission as compared to the base scenario. Graphical repre-
sentation of the balances and its decomposition into exports and imports for
each scenario can be found in figures A.1-A.6 in the Appendix A, figures 5.3
and 5.2 show then the comparisons of transmission among the scenarios with
respect to all border profiles.

We can observe an increase in the amount of total transported electricity
over on all border profiles, including the inner ones in Germany. The growth
ranges from 3,5% on the Czech-Tennet profile to 21,1% on the Czech-Polish
profile respectilvely. In absolute terms, greatest rise of 17.28 GWh occurs on
the Austrian-German borders from the international profiles. Concerning the
German intrastate ones, significant growth between all TSOs can be observed
even in the environment of such a low utilization of VRES capacities.

We can see an interesting pattern if the scenarios res and full are compared
between themselves. In the section 2.2.3, expected impacts of nuclear phase-
out were discussed. Briefly, negative impacts on the grid were anticipated,
especially in the sense of exacerbating the overloading of grids in the north-
south direction in Germany and in sense of greater loop flows through Poland
and the Czech Republic. As can be seen form the table 5.1 and figures 5.3 and
5.2 this hypothesis cannot be confirmed in the week with low VRES production.
The increases in the magnitudes of flows, transmitted electricity (both absolute
and relative ones) or the direction of electricity flows are almost unchanged or
even decreased. Same impacts can be observed on the unaggregated lines in the
figure A.7. Moreover, these patterns can be seen in weeks with much higher
VRES electricity inflow as well. Reasoning for such behaviour is thus given
there.

Finally, figure A.7 provides an overview of statistics for particular unaggre-

gated international lines”. When focusing on the comparison of scenarios res

6Tt is important to note that this differs from reality in the sense that there, firstly single
TSO areas are balanced and then the cross-zonal balancing takes place. Its commonly found
in studies that the more areas and more uncoordination between individual T'SO, the less
efficient is the setup and the higher are the volumes and costs of congestion management
(Kunz & Zerrahn 2016; 2015)

"Similar tables for Czech lines, German lines and interconnectors with neighbours of
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and full to the base one, we can see that average utilization of cross border-
interconnectors is very low (below 20 %) as a result of low amount of transport
as explained in previous paragraphs. Even though some increase of utilization
can be observed on all but three lines, the icrease is very modest. The maximal
rise of 6,56% was measured over the line Krajnik (PL)-Vierraden (DE).

Concerning the volatility, one of the thesis’ hypotheses stated that VRES
induce growth of volatility of transmission and, consequently, contribute to the
system destabilization. The results support this statement as can be seen form
the figure A.7 where volatilities of scenarios res and full with respect to the
base were compared. All but three lines evince standard deviation increment
and thus more fluctuating flows can be observed. Special attention should be
dedicated to the increase of volatility on all lines on Polish-German, Czech-
Polish and German-Austrian borders because these are of greatest concern
regarding the loop flows discussion (see section 2.4.3 for more). Unlike in the
previous case with the average load, the degree of volatility differs between res
and full scenarios. As noted in the section 5.1, the res scenario captures the
isolated influence of renewables on volatility. The scenario full incorporates also
nuclear phase-out into this. In both cases, the higher degree of volatility can
be observed, but nuclear phase-out further aggravates it. This is in accordance
with intuition. By eliminating the nuclear plants, which are base-load operating
plants supplying stable amounts of power, volatility naturally increases. The
same happens with an inflow highly time-variant solar and wind production.

Lastly, the feature "number of extreme events” denotes as "# extremes”
is given in the figure A.7 for the week 4 and in the figure 5.13 as an overview
for all weeks. The definition is how many times the flow on the particular line
exceeds 75% thermal limit of the line. This limit is taken as a critical value. To
remind, each line is subject to a 20 % margin representing the "N-1” criterion
of security. Thus, if the flow on the line exceeds 75%, it could be considered as
critical.

Within the scope of week 4, only one critical event occured on the line

Krajnik-Vierraden. This is due to the fact that the general load is very low.

CE are provided in the supplemental material. Nontheless, we do not sink into detailed
commentary here
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5.2.2 Results for high VRES production - week 14

Figure 4.3 represents the week 14 which is the timespan where absolute cummu-
lative peak of VRES production occured. We should firstly note that the sense
of result from previous subsection is unchanged. Nevertheless, the magnitudes
and strengths of effects are notably larger.

Figures A.10 and A.8 show directly the impact of high power and wind feed-
in. The flows of electricity over all profiles dramatically rose and constitute
multiples of low VRES production. This can be seen both on balances and on
total transmission (fig.5.6 and 5.5). Actual total transmission average increased
2.54 times, maximal relative one increased about 3.41 times (CZ-Tennet profile)
and maximal absolute one grew by 670.3 GWh (50Hz -Tennet profile).

The comparison of real balances to the modeled ones yields much more
satisfactory results than in week 4. Figure A.10 shows it visually, table 5.4
numerically. Direction of the flow does not correspond to reality only on the
Czech-Slovak border. Moreover, fit is, on average, much better than in the
case of low production. The best fit on the CZ-Tennet border overestimates
the actual exchange only by 3,8%. This is quite good news as the peak values
of VRES production are of greatest concern when speaking about the grids
(again, as referred to in a section 2.2.3).

Scenarios res and full yield both higher exchanges and larger amount of
transmitted electricity as compared to base but again the influence of nuclear
phase-out, i.e. the difference between res and full flows, is counterintuitive.
Flows in full are actually almost the same or lower than in the case of res but
they were originally expected to be much higher (reasons for this expectations
can be found in the section 2.2.3). It is very likely that the answer to this
question is hidden in the merit order effect (fig. 2.11). When base-load and
cheaply operating nuclear power plants are shut down, electricity supply curve
shifts to the left resulting in higher price. This incentivizes more flexible® but
more expensively operating hard-coal, gas or even oil power plants to produce
and supply localy and flexibely the electricity which can smoothen the VRES
volatile production. These amounts cannot be naturally enough to smooth all
the increase in volatile production but can significantly milder it. The exact

effect of the smoothing (and consequently the amount of electricity transport)

8The degree of flexibility of each type of power plants can be seen on the time needed
for the start of the power plant. A list follows: Hydro plants: jlmin; Gas turbine: 15 min;
CC-gas plant: 2 hours; Hard coal and lignite power plant 4 hours; Nuclear power plant: 120
hours. Source: Schober & Woll (2016)
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depends on the magnitude of the merit order shift and on the increase of the
production from mentioned conventional power units. Unfortunately, these
merit order price-related effects were not exactly measured in this thesis as
they exemplify completely independent research question.

Moving to the comparison of scenarios within the scope of the week, we
can again observe growth of cross-zonal transport as Energiewende (scenario
full) and res scenario are taken into account. Rouhgly 10% increase occurs
on profiles in Germany. The other profiles exhibit various behaviour, ranging
from slight decreases to immense growths (fig. 5.4). In particular, sitaution on
German-Austrian and German-Polish border is worth mentioning. The profiles
face 46.5 % and 19.2% transmission increase, respectively, when full scenario
is considered. Also the average load on particual lines on these profiles rose
(Krajnik-Vierraden even by 18.2%). Intuitively, this is also accompanied by
the upturn in critical events growing cummulatively by 16 on all 13 DE-AT
lines and by 27 on only two 50Hz-PL lines as compared to the base situation.

All in all, analysis of volatility (fig 5.4) can be summarized similarly to the
prior case. However, it is important to have in mind that the overall level of
volatility is much higher in the week 14. Growth of standard deviation can be
observed on the base-res basis as well as on the base-full basis on all but two
lines. Also the res-full comparison shows rise in volatility on majority of lines.
In all three cases, particularly interconnecotrs between Germany and Austria
are under the biggest volatility pressure; highest values achieve 50% increase.

Final comment in this section is dedicated to the assessment of the previous
analysis in a broader context. Despite the fact that Northern-Western Europe
is not the area of our particular interest, it is very important to mention here
that the impact of above mentioned high VRES feed-in together with the sce-
narios have much more striking impact on this area than on the area of CE
(illusration in fig. A.29-A.32). Whilst the increases in flows of electrical current
are still in manageable terms in CE, different effect can be measured on the
borders of Germany and Netherlands and Germany and France for example.
Especially in the former case, the lines are hitting their limits almost continu-
ously. Alltogether 4 interconnectors connect Netherlands and Germany. These
lines are subject to very high average load ranging from 57% to 75.5%. Also,
257 critical events occured in the base scenario which increased about another

49 when full scenario was considered?. Slightly better situation can be seen in

9These are results obtained from the model as well but are not subject to publishing in
the thesis. Nevertheless, they can be found in the supplemental materials
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the latter case of German-French borders. After all, these amounts represent

very critical values for the system manageability and stability.

5.2.3 Results for high VRES production - weeks 27 and 49

Only short remark on the meaning and interpretation of the weeks 27 and 49
will be made here. These two weaks are actually a special case for high VRES
grid feed-in. Week 27 (fig. 4.4) represents high share of production from wind
and low share of production from sun. Week 49 (fig 4.5) mirrors exactly the
opposite. Patterns of the results are very similar to the week 14. In spite of
this, several things should be stressed.

Regarding the week 27, we can see quite a low volume of international trans-
mission (table 5.7, fig. 5.9 and 5.8) and balances (fig. A.15-A.20). The only
exception are the border profiles between Germany and Austria and between
the Czech Republic where the balances as well as the transmission is extremely
high as compared to the week 4. Moreover, res and full scenarios induce fur-
ther growth. The backing idea for the high exchange on these two profiles
is based on the regional distribution of solar power plants that are located
mainly in southern Germany (Bavaria) and southern Moravia from which the
electricity into Austria is imported. Volatility analysis provides another inter-
esting observation. Due to the fact, that solar production itself is very volatile
(reverse-parabolic shape of production during day, nothing at night), we can
see very high volatility growth in the week-to-week comparison as well as in
the base-res-full comparison.

Week 49 (fig. 4.5) is very similar to the week 14. It is just worth mentioning
that the transmission and balances are even greater than in the week’s 14
case on all profiles but the German-Austrian one where it is lower (table 5.10,
fig.5.12-5.11 and A.22-A.27). This is the outcome of the wind production in the
north and no solar production in the south. The electricity flows from north
to the south of Germany and through neighbouring states as described in the
figure 2.18. The effect of loop flows is thus strengtened. The same situation
occures on the interconnectores on western and northern German borders as
described in the previous section 5.2.2. The only difference is that the impacts

are even more serious.

5.2.4 Figures and tables
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5.2.5 Limitations of the model

Despite the fact that the model was created in a belief to capture the reality
most precisely, some simplifying assumptions had. The relaxation of these
assumptions and thus removal of consequent limitations can be considered a
great opprortunity for author’s or other researchers’ further work.

Firsty, as a result of immense computational difficulty, simplification of
alternating current (AC) load flow to a direct current (DC) load flow was used.
This allowed for linearization at the cost of some restrictive assumptions causing
lower level of flow accuracy.

Second issue concerns the transmission networks which are static in the
model and reflect the state of the year 2012 also in the scenario full and res
whose reference year is 2025. From this perspective, the results must be read
in the context of ”worst possible scenario” outcome which means what would
the impact of flows on the grid be if nothing was done in network development.
Incorporation of lines that are expected to be built would result in more precise
conclusions in the sense of real policy applications.

Next limitation regards the ceteris paribus nature of the model. When
assessing the impact of scenario res and base, only the parametres in German
power system were adjusted. Even though the measurement of all other factors
was not ambition of this thesis, incorporation of Energy Conceptions of other
involved countries would deliver even more real-world results.

Certain distortion of reality also occurs as a result of not incorporating all
ENTSOE member countries into the analysis. In particular, absence of a node
for Balkan countries cause reversal of direction of electricity flows on Czech-
Slovak borders. An addition of such node would fix the issue.

Last limitation covers the assumptions of perfect competition and welfare
maximization from the perspective of the external social planner. In the former
case, oligopolistic design of the market would probably reflect the reality better.
A wide range of advanced tools addressing this issue could be considered. For
instance, Leuthold (2009) proposes the method of ”Game Theoretic Economic
Engineering Modeling”. Another approach includes the agent-based modeling.
Nevertheless, all these options require significant, deep and quite complicated
restructuring of the current model. Regarding the social planner, concpets from
the field of political economy such as rent seeking, lobbying or cost of political

institutions could be employed in the model.



Chapter 6
Conclusion

The thesis thoroughly examined power and transmission systems in Central
Europe. History of German energy transition and energy laws was described so
that the causes of the power system structural changes in CE could be observed.
Next, consequences of the policies on transmission systems both in national and
international contexts were described. Three key issues were identified: i) the
capacity of the grid in Germany does not correspond to the needs emerging from
Energiewende which creates grid bottlenecks between norhtern and southern
Germany, ii) this induces the electricity to flow through the energy systems
of neighbouring states and iii) current market design in the form of German-
Austrian bidding zone further exacerbates the problems.

Chapter 3 gave an overview of feasible modeling approaches and relevant lit-
erature. Due to the neccesity to capture specific electricity related restrictions
to see the influence on the infrastructure, ELMOD model was chosen to model
the effects. ELMOD can be classified as a large scale non-linear bottom-up op-
timization model maximizing general social welfare fucntion under production
and transmission constraints and under the assumptions of single TSO and of
perfect competition among market players.

Chapter 4 introduced the model formulation and data description. Simpli-
fication to four representative weeks was explained and role of border profiles
in the interpretation of results was sketched.

In the Chapter 5, results were presented. Several important findings were
revealed. First of all, the higher is the feed-in of solar and wind power plants,
the higher is the exchange balance and total trasport of electricity between TSO
areas. This holds for international cross-border profiles as well as for inner-

Germany’s ones. The rise in flows leads also to increase in number of critical
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events which directly endanger grid stability. Furthermore, model results fit the
real values much better under the peak VRES production. This is important
feature of the model as the high amounts of volatile inflows are of substantial
importance when examining transmission grids. Additional analysis found that
while the situation remains manageable in Central Europe, the Nort-Western
Europe should be concerned about this issue much more.

Two scenario developments, full and res, were examined. The first one
attempted to measure the ceteris paribus effect of German Energiewende on
the transmission networks, especially in the context of Central Europe. The
latter one dropped out nuclear phase-out and thus assessed isolated ceteris
paribus impact of increased solar and wind power production.

In the case of res, all expectation were met. Amount of cross- border trans-
mission grew both on intranational lines as well as on the cross-zonal ones; so
did the average load on majority of particular lines. Moreover, significant rise
in volatility of flows was observed.

In the case of full scenario, initial hypothesis was partially rejected. This
stated that nuclear phase-out further exacerbates the congestion (especially be-
tween norhtern-southern Germany) and causes volatility growth. Surprisingly,
it was revealed that nuclear phase-out does not significantly contribute to the
amount of transmission as well as to the average load on lines; instead, these
remain almost unchanged or slightly decrease. Reasoning for this behaviour
lies presumably in the merit order effect. On the other hand, results suggest
that volatility grows as nuclear plants are shut down. This is in accordance
with intuition as the nuclear power plants supply stable base-load output.

Finally, focus on separate peaks in solar and wind production showed that
the combination of high solar and low wind feed-in induces greatly the volatility
and cross-border flows on the Czech-Austrian and German-Austrian borders.
On the contrary, low solar and high wind production leads to the highest ob-
served flows within Germany as well as on transnational lines, except the ones
on German-Austrian borders. Thus, electricity loop flows through other Cen-
tral European countries take up on intensity.

Despite the results, there is still a lot of space for further research. The
ceteris paribus changes could be replaced by incorporation of parametres and
variables according to the Energy conceptions of all states, perfect competition
and one TSO assumption could be replaced by oligopolistic strucutres backed
by game theoretic approach and external social planner could be replaced by

political institutions.
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Appendix A

Appendix

Derivation of demand function coefficients

Linear inverse demand function takes the form of:
Tnt = Ant + Dntht

By rearranging:
At 1
nt = = t 5Tt

Dnt Dnt

Standard price elasticity takes the form of:

_ a(]nt Tnt _ Tt

B Ot Ant DGy

(A.3)

Elasticity is treated as an external parameter and, as such, is known at the

reference point (W2§f7 qﬁif)-

Exact value of the elasticity accounts for -0.25.

Backing reasons can be found at the end of section 4.3.5. Hence, price A,; and

slope D,,; can be calculated at each node and for each time period:

1 ijf

D, ==
g

<0

ref ref ref

Ape = T = Drary” = Ty <

(A.4)

(A.5)
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Derivation of supply function coefficient

The supply function coefficient M,,. is based on the common calculation of
marginal cost of electricity. The formula applied in this thesis is based on the
definition given in Schober & Woll (2016). The marginal cost of power plant ¢

at node n has the form of:

) nc y nc y y nc
_ Pricepg + priceco, s intensityco,

M, = (A.6)

ef ficiencyne

Model results - Figures and Tables

All figures and tables in this Appendix are based on outputs from the ELMOD
model as conducted in this thesis. The only external data, provided by ENTSOE
(2016a), are used for illustration of real balances.

Note: Figures A.3-A.27 are determined by the logic of the direction of lines.
For example CZ = PL indicates the direction of the line from the Czech
Republic to Poland). Exports and imports are defined accordingly. Exports
go in hand with line directions (half-plane y > 0), imports go against them
(half-plane y < 0)



Figure A.2: Exchange DE, W4, res

Figure A.1: Exchange DE, W4, base
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Figure A.5: Exchange DE, W4, full
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Figure A.9: Exchange DE, W14, res

Figure A.8: Exchange DE, W14, base

Bibliography

saJpodwi] S JodXo @  S4 dueeq @
saspodwi s34 ModXa @ S3JduejeqE

13NN3L
NOIYdINY  mgidusues] NOIYdINY ¥S<=1d 1v<=30 3A<=1d <=20 ZHOS<=2D L¥<=2ZD XS<=20 Td<=DD
$-30<=N-30 <= Mgausuell <= INNIL <=1INNIL  LINNIL<=ZHOS - 00z
00Y-
001-
j 00z m
, 0
Lo m
002 00T
9]
0oy S 002
=2
009 - 00€
008 - 00v
0001 L o0c
0021
mmmntoac.___u wmmntoaxw- wmmnmucm_mnm wucm_mn_mwm_l wmmntoQE_D wwmgtoame wmmgmucm_maﬂ
NOMdAY ~ M@dusuell  NOIYAINY 1INNIL
$-30<=N-30 <=M@.usuell  <=1INNIL  <=13INNIL LINNIL<=ZHOS WS<=1d 1¥<=30 30<=1d <=20 ZHOS<=2D LV<=20 MNS<=7) 1d<=1)
- 00t
002-
0
002
Q
0oy S
=2
009
008
000T - 00y
L oozt L 005

ymo
Figure A.11: Exchange CE, W14, res
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Figure A.10: Exchange CE, W14, base
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Figure A.12: Exchange DE, W14, full
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Figure A.13: Exchange CE, W14, full
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Analytical summary, W14

Figure A.14
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Figure A.16: Exchange DE, W27, res

Figure A.15: Exchange DE, W27, base
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Figure A.19: Exchange DE, W27, full
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Figure A.20: Exchange CE, W27, full
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Analytical summary, W27

Figure A.21
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Figure A.23: Exchange DE, W49, res

Figure A.22: Exchange DE, W49, base
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Figure A.25: Exchange CE, W49, res
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Figure A.24: Exchange CE, W49, base
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Figure A.26: Exchange DE, W49, full
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Figure A.27: Exchange CE, W49, full
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Analytical summary, W49

Figure A.28
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Figure A.30: Transmission CE, W27

Figure A.29: Transmission CE W4
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Figure A.32: Transmission CE, W49

Figure A.31: Transmission CE, W14
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